python 实现9×9二维数组数独算法

9×9二维数组数独算法介绍

数独(Sudoku)是一个经典的逻辑填数游戏,通常在一个9x9的网格上进行,网格被划分为9个3x3的子网格(称为“宫”)。游戏的目标是在网格中填入数字1到9,使得每行、每列以及每个3x3的宫中都包含这九个数字,且每个数字在每个区域中只能出现一次。

对于9x9的数独算法,有多种方法可以求解,包括回溯法(递归)、模拟退火、遗传算法等。其中,回溯法因其简单性和高效性而被广泛使用。

以下是使用回溯法解决9x9数独问题的一个基本算法步骤:

1. 初始化

创建一个9x9的二维数组来存储数独网格。
初始化已知的数字,将未知的位置设为0或某个占位符。

2. 定义辅助函数

isValid(row, col, num): 检查在(row, col)位置放置数字num是否合法(即检查行、列和宫是否已包含该数字)。
solveSudoku(board): 递归函数,尝试填充数独网格。

3. 实现solveSudoku函数

遍历数独网格的每个位置。
如果当前位置已填充(非0),则跳过。
否则,尝试填入1到9的每个数字。
对于每个数字,检查是否合法(使用isValid函数)。
如果合法,则在该位置填入该数字,并递归调用solveSudoku来填充下一个位置。
如果递归调用返回true(表示数独已解决),则返回true。
如果递归调用返回false(表示当前数字不合适),则回溯(即将当前位置置为0,尝试下一个数字)。
如果所有数字都尝试完毕且没有找到解决方案,则返回false。

4. 调用solveSudoku函数

调用solveSudoku函数并传入初始化的数独网格。
如果返回true,则数独已解决;如果返回false,则数独无解或初始状态有误。

示例代码(Python)

这里只给出solveSudoku函数和isValid函数的伪代码或框架,因为完整的实现可能较长且包含大量细节。

def isValid(board, row, col, num):
    # 检查行
    for i in range(9):
        if board[row][i] == num:
            return False
    # 检查列
    for i in range(9):
        if board[i][col] == num:
            return False
    # 检查宫
    startRow, startCol = 3 * (row // 3), 3 * (col // 3)
    for i in range(3):
        for j in range(3):
            if board[i + startRow][j + startCol] 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值