一、架构核心原理深度解析
1.1 非对等全节点架构的本质特征
**非对等全节点架构(Full-Node Asymmetric Architecture)**是针对医疗AI场景特殊需求而设计的一种创新性计算架构。其核心思想在于打破传统对称集群架构的局限性,通过节点能力的差异化配置和智能调度,实现计算资源的最优配置和任务的高效执行。
根据实际部署案例显示,该架构在医疗AI场景中具有三个本质特征:
1.1.1 节点异构性的多维度体现
硬件层面的异构性:
-
GPU层级差异化:从实际部署案例来看,医疗AI架构通常采用A100/H100作为核心训练节点,A40/T4作为推理节点,甚至保留部分CPU节点用于协调和预处理任务。
-
存储架构的异构设计:采用NVMe高速节点(用于热数据和实时推理)与HDD大容量节点(用于历史数据和模型训练)相结合的方式。根据医疗影像AI推理服务的实践,这种存储异构设计能够将数据访问延迟降低60%以上。
-
网络拓扑的差异化:核心训练节点采用InfiniBand或RoCE高速网络(带宽可达200