摘要
电子病历(EHR)的智能化是医疗AI的核心战场,而Model Context Protocol(MCP) 作为新兴的模型交互协议,正在重构医疗AI系统的通信范式。本文以Python技术栈为主线,系统解析MCP在电子病历智能化中的演进路径:从早期基于硬编码规则的静态通信,到统计模型的API化服务,再到深度学习的上下文感知交互,最终迈向多模态数据涌现的动态智能协同。通过剖析MCP如何解决医疗数据异构性、模型协作性、临床实时性等核心痛点,揭示其从“数据管道”到“智能中枢”的蜕变,并探讨在隐私保护、可解释性、联邦学习等挑战下的未来发展方向。
第一章:引言——电子病历智能化与MCP的崛起
1.1 电子病历智能化的核心挑战
电子病历系统(EHR)承载着医疗数据的“金矿”,但其智能化面临三大瓶颈:
- 数据异构性:结构化数据(实验室指标)、半结构化数据(医嘱)、非结构化数据(影像、病理报告)并存
- 模型孤岛化:不同