6.2 关键数学理论与建模方法
- 深度神经网络作为神经模型:
- 卷积神经网络 (CNNs): 其层级结构(卷积层、池化层)、局部连接、权重共享等特性,与视觉皮层(V1, V2, V4, IT)的层级组织、感受野特性高度相似。CNNs被广泛用于模拟视觉处理,其内部表征(特征图)与对应脑区(如V4, IT)神经元的反应特性具有显著相关性。
- 循环神经网络 (RNNs): 具有循环连接,能够处理时序信息,维持内部状态。这与大脑处理动态信息(如语音、运动控制、工作记忆)的机制(如前额叶皮层PFC的持续活动、基底神经节-丘脑环路)高度相关。长短期记忆网络(LSTMs)、门控循环单元(GRUs)解决了标准RNN的梯度消失问题,能更好地建模长期依赖,被用于模拟工作记忆、决策等任务。
- Transformer: 基于自注意力机制(Self-Attention),擅长捕捉长距离依赖关系。在自然语言处理(NLP)取得巨大成功。研究发现,大脑(特别是前额叶和颞叶皮层)在处理语言和复杂关系时也可能存在类似的注意力机制和动态路由计算。Transformer正被用于探索语言和高级认知的神经基础。
- 生成模型: