计算神经科学数学建模编程深度前沿方向研究(下)

在这里插入图片描述

6.2 关键数学理论与建模方法
  • 深度神经网络作为神经模型:
    • 卷积神经网络 (CNNs): 其层级结构(卷积层、池化层)、局部连接、权重共享等特性,与视觉皮层(V1, V2, V4, IT)的层级组织、感受野特性高度相似。CNNs被广泛用于模拟视觉处理,其内部表征(特征图)与对应脑区(如V4, IT)神经元的反应特性具有显著相关性。
    • 循环神经网络 (RNNs): 具有循环连接,能够处理时序信息,维持内部状态。这与大脑处理动态信息(如语音、运动控制、工作记忆)的机制(如前额叶皮层PFC的持续活动、基底神经节-丘脑环路)高度相关。长短期记忆网络(LSTMs)、门控循环单元(GRUs)解决了标准RNN的梯度消失问题,能更好地建模长期依赖,被用于模拟工作记忆、决策等任务。
    • Transformer: 基于自注意力机制(Self-Attention),擅长捕捉长距离依赖关系。在自然语言处理(NLP)取得巨大成功。研究发现,大脑(特别是前额叶和颞叶皮层)在处理语言和复杂关系时也可能存在类似的注意力机制和动态路由计算。Transformer正被用于探索语言和高级认知的神经基础。
    • 生成模型:
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allen_Lyb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值