专题二:二叉树的深搜算法

> 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。

> 目标:了解什么是深搜,并且掌握深搜算法。

> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!

> 专栏选自:递归、搜索与回溯算法_დ旧言~的博客-CSDN博客

> 望小伙伴们点赞👍收藏✨加关注哟💕💕

一、算法讲解

在解决⼀个规模为 n 的问题时,如果满足以下条件,我们可以使用递归来解决:

  • 问题可以被划分为规模更小的子问题,并且这些子问题具有与原问题相同的解决方法。
  • 当我们知道规模更小的子问题(规模为 n - 1)的解时,我们可以直接计算出规模为 n 的问题
  • 的解。
  • 存在⼀种简单情况,或者说当问题的规模足够小时,我们可以直接求解问题。

⼀般的递归求解过程如下:

  • 验证是否满足简单情况。
  • 假设较小规模的问题已经解决,解决当前问题。

上述步骤可以通过数学归纳法来证明。

二、算法习题


2.1 第一题

题目链接:98. 验证二叉搜索树 - 力扣(LeetCode)

题目描述:

题目解析:

后序遍历按照左⼦树、根节点、右⼦树的顺序遍历⼆叉树的所有节点,通常⽤于⼆叉搜索树相关题
⽬。

算法思路:

如果⼀棵树是⼆叉搜索树,那么它的中序遍历的结果⼀定是⼀个严格递增的序列。因此,我们可以初始化⼀个⽆穷⼩的全区变量,⽤来记录中序遍历过程中的前驱结点。那么就可以在中序遍历的过程中,先判断是否和前驱结点构成递增序列,然后修改前驱结点为当前结点,传⼊下⼀层的递归中。

算法流程:

   1. 初始化⼀个全局的变量 prev,用来记录中序遍历过程中的前驱结点的 val。

2. 中序遍历的递归函数中: 

a. 设置递归出⼝:root == nullptr 的时候,返回 true;
b. 先递归判断左⼦树是否是⼆叉搜索树,⽤ retleft 标记;
c. 然后判断当前结点是否满⾜⼆叉搜索树的性质,⽤ retcur 标记:

  • 如果当前结点的 val ⼤于 prev,说明满⾜条件,retcur 改为 true;
  • 如果当前结点的 val ⼩于等于 prev,说明不满⾜条件,retcur 改为 false;

d. 最后递归判断右⼦树是否是⼆叉搜索树,⽤ retright 标记;

3. 只有当 retleft、 retcur 和 retright 都是 true 的时候,才返回 true。   

代码呈现:

class Solution {
    long prev = LONG_MIN;

public:
    bool isValidBST(TreeNode* root) 
    {
        if (root == nullptr)
            return true;
        bool left = isValidBST(root->left);
        // 剪枝
        if (left == false)
            return false;
        bool cur = false;
        if (root->val > prev)
            cur = true;
        // 剪枝
        if (cur == false)
            return false;
        prev = root->val;
        bool right = isValidBST(root->right);
        return left && right && cur;
    }
};

2.2 第二题

题目链接:230. 二叉搜索树中第 K 小的元素 - 力扣(LeetCode)

题目描述:

  

算法思路:

我们可以根据中序遍历的过程,只需扫描前 k 个结点即可,因此,我们可以创建⼀个全局的计数器 count,将其初始化为 k,每遍历⼀个节点就将 count--。直到某次递归的时候,count 的值等于 1,说明此时的结点就是我们要找的结果。

算法流程:

定义⼀个全局的变量 count,在主函数中初始化为 k 的值(不⽤全局也可以,当成参数传⼊递归过
程中)

递归函数的设计:

int dfs(TreeNode* root):返回值为第 k 个结点。

递归函数流程(中序遍历):

1. 递归出⼝:空节点直接返回 -1,说明没有找到。
2. 去左⼦树上查找结果,记为 retleft:

  • 如果 retleft == -1,说明没找到,继续执⾏下⾯逻辑。
  • 如果 retleft != -1,说明找到了,直接返回结果,⽆需执⾏下⾯代码(剪枝)。

3. 如果左⼦树没找到,判断当前结点是否符合:

  • 如果符合,直接返回结果

4. 如果当前结点不符合,去右⼦树上寻找结果。

代码呈现:

class Solution {
    int count;
    int ret;

public:
    int kthSmallest(TreeNode* root, int k) 
    {
        count = k;
        dfs(root);
        return ret;
    }
    void dfs(TreeNode* root) 
    {
        if (root == nullptr || count == 0)
            return;
        dfs(root->left);
        count--;
        if (count == 0)
            ret = root->val;
        dfs(root->right);
    }
};

2.3 第三题

题目链接:257. 二叉树的所有路径 - 力扣(LeetCode)

题目描述:

  

算法思路:使⽤深度优先遍历(DFS)求解。

路径以字符串形式存储,从根节点开始遍历,每次遍历时将当前节点的值加⼊到路径中,如果该节点为叶⼦节点,将路径存储到结果中。否则,将 "->" 加⼊到路径中并递归遍历该节点的左右子树。

定义⼀个结果数组,进⾏递归。递归具体实现⽅法如下:

  1. 如果当前节点不为空,就将当前节点的值加⼊路径 path 中,否则直接返回。
  2. 判断当前节点是否为叶⼦节点,如果是,则将当前路径加⼊到所有路径的存储数组 paths 中。
  3. 否则,将当前节点值加上 "->" 作为路径的分隔符,继续递归遍历当前节点的左右⼦节点。
  4. 返回结果数组。

特别地,我们可以只使⽤⼀个字符串存储每个状态的字符串,在递归回溯的过程中,需要将路径中
的当前节点移除,以回到上⼀个节点。

具体实现⽅法如下:

1. 定义⼀个结果数组和⼀个路径数组。
2. 从根节点开始递归,递归函数的参数为当前节点、结果数组和路径数组。

  • 如果当前节点为空,返回。
  • 将当前节点的值加⼊到路径数组中。
  • 如果当前节点为叶⼦节点,将路径数组中的所有元素拼接成字符串,并将该字符串存储到结果
  • 数组中。
  • 递归遍历当前节点的左⼦树。
  • 递归遍历当前节点的右⼦树。
  • 回溯,将路径数组中的最后⼀个元素移除,以返回到上⼀个节点。

3. 返回结果数组。

代码呈现:

class Solution {
public:
    vector<string> ret; // 记录结果
    vector<string> binaryTreePaths(TreeNode* root) 
    {
        string path;
        if (root == nullptr)
            return ret;
        dfs(root, path);
        return ret;
    }
    
    void dfs(TreeNode* root, string path) 
    {
        path += to_string(root->val);
        if (root->left == nullptr && root->right == nullptr) 
        {
            ret.push_back(path);
            return;
        }
        path += "->";
        if (root->left)
            dfs(root->left, path);
        if (root->right)
            dfs(root->right, path);
    }
};

三、结束语 

今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。

​​ 

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值