> 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。> 目标:了解什么是FloodFill 算法,并且FloodFill 算法。
> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!
> 专栏选自:递归、搜索与回溯算法_დ旧言~的博客-CSDN博客
> 望小伙伴们点赞👍收藏✨加关注哟💕💕
一、算法讲解
FloodeFill算法即填充算法,原理就是从一个点开始向四周扩散,向周围可以走到的点填充颜色,直到将可扩散到的点全部填充颜色。
通常使用下面两种方法解决FloodFill算法问题:
- BFS (宽搜)算法通常使用队列实现,将起始像素点加入队列中,并不断扩展队列中的像素点,直到队列为空为止。
- DFS(深搜) 算法通常使用递归实现,在处理当前像素点的相邻像素点时,递归调用 DFS 函数,不断深入直到无法找到相邻像素为止。
二、算法习题
2.1 第一题
题目描述:
算法思路:
可以利⽤「深搜」或者「宽搜」,遍历到与该点相连的所有「像素相同的点」,然后将其修改成指定的像素即可。
递归函数设计:
• 参数:
- 原始矩阵;
- 当前所在的位置;
- 需要修改成的颜⾊。
• 函数体:
- a. 先将该位置的颜⾊改成指定颜⾊(因为我们的判断,保证每次进⼊递归的位置都是需要修改的位置);
- b. 遍历四个⽅向上的位置:
- 如果当前位置合法,并且与初试颜⾊相同,就递归进去。
代码呈现:
class Solution {
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
int m, n;
int prev;
public:
vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc,int color)
{
if (image[sr][sc] == color)
return image;
m = image.size(), n = image[0].size();
prev = image[sr][sc];
dfs(image, sr, sc, color);
return image;
}
void dfs(vector<vector<int>>& image, int i, int j, int color)
{
image[i][j] = color;
for (int k = 0; k < 4; k++)
{
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < m && y >= 0 && y < n && image[x][y] == prev)
dfs(image, x, y, color);
}
}
};
2.2 第二题
题目描述:
算法思路:
遍历整个矩阵,每次找到「⼀块陆地」的时候:
- 说明找到「⼀个岛屿」,记录到最终结果 ret ⾥⾯;
- 并且将这个陆地相连的所有陆地,也就是这块「岛屿」,全部「变成海洋」。这样的话,我们下次遍历到这块岛屿的时候,它「已经是海洋」了,不会影响最终结果。
- 其中「变成海洋」的操作,可以利⽤「深搜」和「宽搜」解决,其实就是 733. 图像渲染 这道题~这样,当我们,遍历完全部的矩阵的时候, ret 存的就是最终结果。
算法流程:
- 初始化 ret = 0 ,记录⽬前找到的岛屿数量;
- 双重循环遍历⼆维⽹格,每当遇到⼀块陆地,标记这是⼀个新的岛屿,然后将这块陆地相连的陆地全部变成海洋。
递归函数的设计:
1. 把当前格⼦标记为⽔;
2. 向上、下、左、右四格递归寻找陆地,只有在下标位置合理的情况下,才会进⼊递归:
- 下⼀个位置的坐标合理。
- 并且下⼀个位置是陆地。
代码呈现:
class Solution {
vector<vector<bool>> vis;
int m, n;
public:
int numIslands(vector<vector<char>>& grid)
{
m = grid.size(), n = grid[0].size();
vis = vector<vector<bool>>(m, vector<bool>(n));
int ret = 0;
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
{
if (!vis[i][j] && grid[i][j] == '1')
{
ret++;
dfs(grid, i, j);
}
}
return ret;
}
int dx[4] = {0, 0, -1, 1};
int dy[4] = {1, -1, 0, 0};
void dfs(vector<vector<char>>& grid, int i, int j)
{
vis[i][j] = true;
for (int k = 0; k < 4; k++)
{
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] &&grid[x][y] == '1')
dfs(grid, x, y);
}
}
};
2.3 第三题
题目描述:
算法思路:
- 遍历整个矩阵,每当遇到⼀块⼟地的时候,就⽤「深搜」或者「宽搜」将与这块⼟地相连的「整个岛屿」的⾯积计算出来。
- 然后在搜索得到的「所有的岛屿⾯积」求⼀个「最⼤值」即可。
- 在搜索过程中,为了「防⽌搜到重复的⼟地」:
- 可以开⼀个同等规模的「布尔数组」,标记⼀下这个位置是否已经被访问过;
- 也可以将原始矩阵的 1 修改成 0 ,但是这样操作会修改原始矩阵。
算法流程:
• 主函数内:
- 遍历整个数组,发现⼀块没有遍历到的⼟地之后,就⽤ dfs ,将与这块⼟地相连的岛屿的⾯积求出来;
- 然后将⾯积更新到最终结果 ret 中。
• 深搜函数 dfs 中:
- 能够进到 dfs 函数中,说明是⼀个没遍历到的位置;
- 标记⼀下已经遍历过,设置⼀个变量 S = 1 (当前这个位置的⾯积为 1 ),记录最终的⾯积;
- 上下左右遍历四个位置: 如果找到⼀块没有遍历到的⼟地,就将与这块⼟地相连的岛屿⾯积累加到 S 上。
- 循环结束后, S 中存的就是整块岛屿的⾯积,返回即可。
代码呈现:
class Solution
{
bool vis[51][51];
int m, n;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
int count;
public:
int maxAreaOfIsland(vector<vector<int>>& grid)
{
m = grid.size(), n = grid[0].size();
int ret = 0;
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
if (!vis[i][j] && grid[i][j] == 1)
{
count = 0;
dfs(grid, i, j);
ret = max(ret, count);
}
return ret;
}
void dfs(vector<vector<int>>& grid, int i, int j)
{
count++;
vis[i][j] = true;
for (int k = 0; k < 4; k++)
{
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] && grid[x][y] == 1)
dfs(grid, x, y);
}
}
};
2.4 第四题
题目描述:
算法思路:
正难则反。可以先利⽤ dfs 将与边缘相连的 '0' 区域做上标记,然后重新遍历矩阵,将没有标记过的 '0'修改成 'X' 即可。
代码呈现:
class Solution {
int dx[4] = {1, -1, 0, 0};
int dy[4] = {0, 0, 1, -1};
int m, n;
public:
void solve(vector<vector<char>>& board)
{
m = board.size(), n = board[0].size();
// 1. 把边界的 O 相连的联通块,全部修改成 .
for (int j = 0; j < n; j++) {
if (board[0][j] == 'O')
dfs(board, 0, j);
if (board[m - 1][j] == 'O')
dfs(board, m - 1, j);
}
for (int i = 0; i < m; i++)
{
if (board[i][0] == 'O')
dfs(board, i, 0);
if (board[i][n - 1] == 'O')
dfs(board, i, n - 1);
}
// 2. 还原
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
{
if (board[i][j] == '.')
board[i][j] = 'O';
else if (board[i][j] == 'O')
board[i][j] = 'X';
}
}
void dfs(vector<vector<char>>& board, int i, int j)
{
board[i][j] = '.';
for (int k = 0; k < 4; k++)
{
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] == 'O')
dfs(board, x, y);
}
}
};
2.5 第五题
题目描述:
算法思路:
正难则反。
- 如果直接去判断某⼀个位置是否既能到⼤西洋也能到太平洋,会重复遍历很多路径。
- 我们反着来,从⼤西洋沿岸开始反向 dfs ,这样就能找出那些点可以流向⼤西洋;同理,从太平洋沿岸也反向 dfs ,这样就能找出那些点可以流向太平洋。那么,被标记两次的点,就是我们要找的结果。
代码呈现:
class Solution {
int m, n;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
public:
vector<vector<int>> pacificAtlantic(vector<vector<int>>& h)
{
m = h.size(), n = h[0].size();
vector<vector<bool>> pac(m, vector<bool>(n));
vector<vector<bool>> atl(m, vector<bool>(n));
// 1. 先处理 pac 洋
for (int j = 0; j < n; j++)
dfs(h, 0, j, pac);
for (int i = 0; i < m; i++)
dfs(h, i, 0, pac);
// 2. 处理 atl 洋
for (int i = 0; i < m; i++)
dfs(h, i, n - 1, atl);
for (int j = 0; j < n; j++)
dfs(h, m - 1, j, atl);
vector<vector<int>> ret;
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
if (pac[i][j] && atl[i][j])
ret.push_back({i, j});
return ret;
}
void dfs(vector<vector<int>>& h, int i, int j, vector<vector<bool>>& vis)
{
vis[i][j] = true;
for (int k = 0; k < 4; k++)
{
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] && h[x][y] >= h[i][j])
dfs(h, x, y, vis);
}
}
};
2.6 第六题
题目描述:
算法思路:
- 模拟类型的 dfs 题⽬。
- ⾸先要搞懂题⽬要求,也就是游戏规则。
- 从题⽬所给的点击位置开始,根据游戏规则,来⼀次 dfs 即可。
代码呈现:
class Solution {
int dx[8] = {0, 0, 1, -1, 1, 1, -1, -1};
int dy[8] = {1, -1, 0, 0, 1, -1, 1, -1};
int m, n;
public:
vector<vector<char>> updateBoard(vector<vector<char>>& board, vector<int>& click)
{
m = board.size(), n = board[0].size();
int x = click[0], y = click[1];
if (board[x][y] == 'M') // 直接点到地雷
{
board[x][y] = 'X';
return board;
}
dfs(board, x, y);
return board;
}
void dfs(vector<vector<char>>& board, int i, int j)
{
// 统计⼀下周围的地雷个数
int count = 0;
for (int k = 0; k < 8; k++)
{
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] == 'M')
count++;
}
if (count) // 周围有地雷
{
board[i][j] = count + '0';
return;
} else // 周围没有地雷
{
board[i][j] = 'B';
for (int k = 0; k < 8; k++)
{
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] == 'E')
dfs(board, x, y);
}
}
}
};
2.7 第七题
题目描述:
算法思路:
- 我们可以通过「深搜」或者「宽搜」,从 [0, 0] 点出发,按照题⽬的「规则」⼀直往 [m - 1,n - 1] 位置⾛。
- 同时,设置⼀个全局变量。每次⾛到⼀个合法位置,就将全局变量加⼀。当我们把所有能⾛到的路都⾛完之后,全局变量⾥⾯存的就是最终答案。
算法流程:
• 递归函数设计:
a. 参数:当前所在的位置 [i, j] ,⾏⾛的边界 [m, n] ,坐标数位之和的边界 k ;
b. 递归出⼝:
- [i, j] 的坐标不合法,也就是已经超出能⾛的范围;
- [i, j] 位置已经⾛过了(因此我们需要创建⼀个全局变量 bool st[101][101] ,来标记当前位置是否⾛过);
- [i, j] 坐标的数位之和⼤于 k ;
上述情况的任何⼀种都是递归出⼝。
c. 函数体内部:
- 如果这个坐标是合法的,就将全局变量 ret++ ;
- 然后标记⼀下 [i, j] 位置已经遍历过;
- 然后去 [i, j] 位置的上下左右四个⽅向去看看。
• 辅助函数:
a. 检测坐标 [i, j] 是否合法;
b. 计算出 i,j 的数位之和,然后与 k 作⽐较即可。
• 主函数:
a. 调⽤递归函数,从 [0 ,0] 点出发。
• 辅助的全局变量:
a. ⼆维数组 bool st[101][101] :标记 [i, j] 位置是否已经遍历过;
b. 变量 ret :记录⼀共到达多少个合法的位置。
c. 上下左右的四个坐标变换。
代码呈现:
class Solution {
int m, n, k;
bool vis[101][101];
int ret;
int dx[4] = {0, 0, -1, 1};
int dy[4] = {1, -1, 0, 0};
public:
int wardrobeFinishing(int _m, int _n, int _k)
{
m = _m, n = _n, k = _k;
dfs(0, 0);
return ret;
}
void dfs(int i, int j)
{
ret++;
vis[i][j] = true;
for (int k = 0; k < 4; k++)
{
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] && check(x, y))
dfs(x, y);
}
}
bool check(int i, int j)
{
int tmp = 0;
while (i)
{
tmp += i % 10;
i /= 10;
}
while (j)
{
tmp += j % 10;
j /= 10;
}
return tmp <= k;
}
};
三、结束语
今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。