> 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。> 目标:了解什么是记忆化搜索,并且掌握记忆化搜索算法。
> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!
> 专栏选自:动态规划算法_დ旧言~的博客-CSDN博客
> 望小伙伴们点赞👍收藏✨加关注哟💕💕
一、算法讲解
背包问题 (Knapsack problem) 是⼀种组合优化的 NP完全问题。
问题可以描述为:给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如选
择,才能使得物品的总价格最⾼。
根据物品的个数,分为如下⼏类:
- 01 背包问题:每个物品只有⼀个
- 完全背包问题:每个物品有⽆限多个
- 多重背包问题:每件物品最多有 si 个
- 混合背包问题:每个物品会有上⾯三种情况......
- 分组背包问题:物品有 n 组,每组物品⾥有若⼲个,每组⾥最多选⼀个物品
其中上述分类⾥⾯,根据背包是否装满,⼜分为两类:
- 不⼀定装满背包
- 背包⼀定装满
优化⽅案:
- 空间优化 - 滚动数组
- 单调队列优化
- 贪⼼优化
根据限定条件的个数,⼜分为两类:
- 限定条件只有⼀个:⽐如体积 -> 普通的背包问题
- 限定条件有两个:⽐如体积 + 重量 -> ⼆维费⽤背包问题
根据不同的问法,⼜分为很多类:
- 输出⽅案
- 求⽅案总数
- 最优⽅案
- ⽅案可⾏性
二、算法习题
2.1 第一题
题目描述:
算法思路:
先将问题转化成我们熟悉的题型:
- 在⼀些物品中「挑选」⼀些出来,然后在满⾜某个「限定条件」下,解决⼀些问题,⼤概率是背包模型;
- 由于每⼀个物品都只有 1 个,因此是⼀个「01 背包问题」。
- 但是,我们发现这⼀道题⾥⾯有「两个限制条件」。因此是⼀个「⼆维费⽤的 01 背包问题」。那么我们定义状态表⽰的时候,来⼀个三维 dp 表,把第⼆个限制条件加上即可。
1. 状态表⽰:
dp[i][j][k] 表⽰:从前 i 个字符串中挑选,字符 0 的个数不超过 j ,字符 1 的个数不超过 k ,所有的选法中,最⼤的⻓度。
2. 状态转移⽅程:
线性 dp 状态转移⽅程分析⽅式,⼀般都是「根据最后⼀步」的状况,来分情况讨论。为了⽅便
叙述,我们记第 i 个字符中,字符 0 的个数为 a ,字符 1 的个数为 b :