博主介绍:CSDN毕设辅导第一人、靠谱第一人、全网粉丝50W+,csdn特邀作者、博客专家、腾讯云社区合作讲师、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌
技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。
主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路。
🍅文末获取源码联系🍅
👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟
2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
系统介绍:
一、设计内容及要求
第一,这份奥运会数据分析的数据来自Kaggle,一家著名的数据科学社区。这个平台聚集了来自全球的数据科学家和专业人士分享的丰富奥运会相关数据,为数据分析提供了宝贵资源。
第二,将奥运会数据中的信息导入分布式编程软件(如Hadoop)进行分析,并分析奥运会数据应用的发展状况及用户需求特点,结合大数据技术的功能特征,提出基于大数据的智能奥运会数据分析系统数据结构,通过大数据分析提供个性化的数据推荐服务,同时优化系统以满足用户对奥运会信息的基本需求,并将此作为奥运会信息服务的创新方案。
第三,数据存储方面,主要应用HDFS分布式文件系统以支持奥运会数据分析系统的大规模数据存储和快速检索。
第四,利用大数据分析方法(关联规则学习、多元线性回归可视化等),基于Hadoop处理平台,建立智能奥运会数据分析系统数据集,为用户提供个性化推荐服务,优化奥运会信息管理和服务呈现。
第五,在上述结构基础上,基于大数据的智能奥运会数据分析信息,采用专业的大数据存储分析工具(MapReduce处理系统、Hadoop数据处理),为读者提供实时的奥运会数据分析服务等。智能奥运会数据分析数据集是大数据技术应用于奥运会信息服务体系服务读者的一个示例,同时也是大数据概念应用于奥运会数据分析领域实现信息共享的一个原型系统。
二、主要规范与技术指标
1. 使用的技术
(1)利用Hadoop进行分布式数据分析;
(2)通过数仓构建,我们基于Hadoop建立了智能奥运会数据分析系统,实现了大规模数据存储、分析和个性化推荐服务,提高了信息管理效率。
(3)借助Spark的多元预测,我们实现了奥运会数据分析系统,优化信息管理,提供高效、准确的数据预测和服务。
2. 工具与模块
开发环境:Hadoop3.1.3及以后版本;
开发工具:不限于idea,navicat等;
存储数据库:MySQL等
3. 预期成果;
(1) 项目作品一份;
(2) 毕业综合训练设计说明书一份。
三、设计工作进度计划
1.2024年11月11日-12月15日:提交开题报告,完成开题报告答辩;
2.2024年12月16日-2025年2月10日:完成毕业论文(设计)初稿;
3.2025年2月11日-2025年4月6日:完善毕业论文(设计)成果;
4.2025年3月1日-2025年3月10日:开展毕业论文(设计)中期检查及整改;
5.2025年4月7日-2025年4月14日:完成定稿、查新检测、反馈及整改;
6.2025年4月22日-2025年5月7日:毕业论文(设计)答辩;
7.2025年5月10日-2025年5月17日:后期检查及整改,整理与归档。
系统架构参考:
本系统采用典型的分层架构设计,主要分为表示层、业务逻辑层和数据访问层,以Spring Boot为核心框架构建Web服务,并使用MySQL作为后端数据库,支持个性化推荐系统的功能实现。在最上层,用户通过Web浏览器访问系统页面,前端使用HTML和JavaScript技术构建表示层,负责与用户交互和展示推荐结果。前端通过HTTP协议与后端进行通信,发送请求并接收推荐数据,交互接口主要以RESTful风格的list接口实现。业务逻辑层是系统的核心,基于Spring Boot框架组织开发。该层包含多个模块:controller负责接收并响应前端请求;service处理具体的业务逻辑,如调用推荐算法、计算相似度等;entity用于映射数据库中的数据结构;dao(数据访问对象)模块用于定义数据库操作方法。通过这些模块协同工作,实现用户行为数据的处理和推荐结果的生成。数据访问层通过ORM(对象关系映射)技术将Java对象与数据库表进行映射,提高开发效率和数据操作的安全性。系统通过PDO(Java Data Object)技术与MySQL数据库通信,完成用户行为数据的存储与读取,如用户收藏记录、书籍信息及推荐结果等。
整个系统架构清晰,各模块职责分明,前后端分离,便于维护与扩展。在保证系统稳定性的同时,还能灵活支持协同过滤推荐算法的接入,适用于个性化阅读推荐系统的需求。

视频演示
请文末卡片dd我获取更详细的演示视频
论文部分参考:
推荐项目:
基于SpringBoot+数据可视化+大数据二手电子产品需求分析系统
基于SpringBoot+数据可视化+协同过滤算法的个性化视频推荐系统
基于SpringBoot+大数据+爬虫+数据可视化的的媒体社交与可视化平台
基于大数据+爬虫+数据可视化+SpringBoot+Vue的智能孕婴护理管理与可视化平台系统
基于大数据爬虫+Hadoop+数据可视化+SpringBoo的电影数据分析与可视化平台
基于python+大数据爬虫技术+数据可视化+Spark的电力能耗数据分析与可视化平台
基于Java+SpringBoot+Vue前后端分离手机销售商城系统设计和实现
基于Java+SpringBoot+Vue前后端分离仓库管理系统设计实现
基于SpringBoot+uniapp微信小程序校园点餐平台详细设计和实现
基于Java+SpringBoot+Vue前后端分离摄影分享网站平台系统
项目案例参考:
为什么选择我
博主是CSDN毕设辅导博客第一人兼开派祖师爷、博主本身从事开发软件开发、有丰富的编程能力和水平、累积给上千名同学进行辅导、全网累积粉丝超过50W。是CSDN特邀作者、博客专家、新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流和合作。
源码获取:
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
精彩专栏推荐订阅:在下方专栏👇🏻