
Model Your Application Domain,
Not Your JSON Structures

Markus Lanthaler 1
1
 Institute for Information Systems and Computer Media

Graz University of Technology
Graz, Austria

mail@markus-lanthaler.com

Christian Gütl 1, 2
2
 School of Information Systems
Curtin University of Technology

Perth, Australia

christian.guetl@iicm.tugraz.at

ABSTRACT
Creating truly RESTful Web APIs is still more an art than a

science. Developers have to struggle with a number of complex

design decisions because concrete guidelines and processes are

missing. Consequently, often it is decided to implement the sim-

plest solution which is, most of the time, to rely on out-of-band

contracts between the client and the server. Instead of properly

modeling the application domain, all the effort is put in the design

of proprietary JSON structures and URLs. This then forms the

base for the contract which is communicated in natural-language

(with all its ambiguity) to client developers. Since it is the server

who owns the contract it may be changed at any point, which,

more often than not, results in broken clients. In this position

paper, we discuss some of the challenges and choices that need to

be made when designing RESTful Web APIs. In particular, we

compare how contracts are supposed to be established and how

they are defined in practice. We illustrate the problems that are the

cause of these divergences. As a first step to address these issues

we describe and motivate an alternative, domain-driven approach

to design Web APIs.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and

Software – Semantic Web, Web World Wide Web (WWW).

H.4.3 [Information Systems Applications]: Communications

Applications – Internet. D.2.11 [Software]: Software Archi-

tectures – Service-oriented architecture (SOA)

Keywords
Web; distributed systems; contracts; Web services; Web APIs,

HTTP; REST; Linked Data; JSON-LD; Hydra; domain-driven

design

1. INTRODUCTION
Web APIs are increasingly important in connecting distributed

systems. They are becoming the glue keeping together systems

within an organization while, at the same time, providing

unprecedented, open access to data managed by these systems to

the wider world. Yet, the proper design and implementation of

Web APIs remains largely more an art than a science.

More often than necessary, developers create mediocre APIs that

result in tight couplings between the clients and the server. One of

the primary reasons for this is that, instead of transferring valid

state transitions at runtime, they are documented out-of-band in

human-readable documentations which forces client developers to

hardcode the information into their clients. This leads to issues

such as reduced evolvability and maintainability. Whenever a

change is made, clients break. What would be needed to alleviate

this issue is a machine-processable documentation of Web APIs

or the dynamic communication of available operations.

Another concerning aspect of current Web APIs is the prevalent

use of proprietary schemas. Not only is it one of the main chal-

lenges when creating generic browsers or crawlers but it also

makes it difficult to integrate data from different sources. Very

often the glue code needed to harmonize data formats and models

is longer than the business logic. Since REST’s principles align

well with the Linked Data principles it would just seem conse-

quent to combine the strengths of both, but in practice they still

remain largely separated. Instead of using RDF’s expressive

power to model the application’s data model in a concise and
precise way, data models are documented in prose.

Triggered by a member submission, the W3C started work on a

Linked Data Platform [1] but, at least at the time of this writing,

the platform does not go beyond defining CRUD operations for

Turtle documents. It could be said, that at the current stage, the

Linked Data Platform is nothing more than a mapping of the

Atom Publishing Protocol to Linked Data technologies such as

RDF and Turtle. We believe that much more holistic models are

required to solve the issues developers face when creating Web

APIs. As a first step towards this ambitious goal, we describe and

motivate an alternative, domain-driven approach to create Linked

Data-based Web APIs in this position paper. We discuss a number

of design decisions and present some concrete, practical
recommendations.

The remainder of this paper is organized as follows. In section 2

we describe contracts on the Web and in distributed systems in

general. We challenge the question whether new media types have

to be created for services to be RESTful. Based on recent devel-

opments, we show an alternative approach which allows to form

composable contracts. In section 3, we discuss the fact that very

few media types have built-in support for hypermedia. We argue

that the Web is a graph and consequently, in most cases, also the

data in Web APIs should be treated as such. Finally, in section 4,

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to

the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.

ACM 978-1-4503-2038-2/13/05.

we present a domain-driven approach as a first attempt to stream-

line and standardize the development of RESTful Web APIs

before we conclude the paper in section 5.

2. CONTRACTS ON THE WEB
In any distributed system there has to be an agreement or, more

formally, a contract prescribing how the various components of

the system interact; otherwise, communication is impossible.

These contracts usually stipulate the data model along with its

processing model and encodings, i.e., the serialization formats; the

interaction model consisting of system interfaces and coordination

protocols; and sometimes various policy assertions. The data

encodings or formats with their processing models enable the

creation and interpretation of messages that are exchanged

between the various components in order to invoke certain opera-

tions. The system interfaces and coordination protocols define the

mechanisms and the order in which messages have to be

exchanged to result in the desired behavior. Finally, policies may

describe non-functional aspects such as service-level agreements

(SLAs), pricing, security requirements, etc.

In the traditional Remote Procedure Call (RPC) model, where all

differences between local and distributed computing are hidden,

usually Interface Description Languages (IDL) are used to define

the application-specific details on top of a, most of the time,

standardized communication protocol. This allows automatic code

generation for both the client and the server side and leads, in

most cases, to the undesirable effect of leaking implementation

details from the server, who owns the contract, to the client. Given

that the client and the server are tightly coupled, such systems

typically rely heavily on implicit state control-flow. The allowed

messages and how they have to be interpreted depends on what

messages have been exchanged before and thus in which implicit

state the system is. Third parties or intermediaries trying to inter-

pret the conversation need the full state transition table and the

initial state to understand the communication. This in turn implies

that states and transitions between them have to identifiable which

in turn implies the need for (complex) orchestration technologies.

The architecture of the Web breaks fundamentally with these

traditional models. On the Web, contracts are based on media

types and protocols. Applications can thus be built by composing

various well-defined building blocks. Media types define the data

and processing models as well as the serialization formats.

Protocols describe interaction models that extend the capabilities

of (the more or less generic) media types in to the realm of

specific application domains; this is mostly done by defining

specific link relations. An example illustrating this nicely is the

Atom Publishing Protocol, which, by defining a number of link

relations, extends the otherwise read-only Atom Syndication

format with an interface allowing to add new or to manipulate

existing entries.

The main difference of the Web compared to other distributed

system architectures is that the contracts are centrally owned

instead of being owned by the server. This allows the independent

evolution of clients and servers as both are coupled to these cen-

tral contracts instead of being coupled to each other. Instead of

relying on upfront agreement of all aspects of interaction, parts of

the contract can communicated or negotiated at runtime. Further-

more, instead of relying on implicit state control-flows as

described above, all communication is stateless, meaning that

each request from the client to the server must contain all the

information necessary for the server to understand the request; a

client cannot take advantage of any stored context on the server as

the server does not keep track of individual client sessions. The

session state is kept entirely on the client. This transfer of state

paired with centrally owned contracts that can be negotiated or

extended at runtime is the essence of what Fielding describes as

the Representational State Transfer (REST) architectural style [2].

The challenge in designing RESTful systems is to select the most

appropriate media type(s) as the core of the application-specific

contract which, sometimes, requires creating new, specialized

media types. Designers of Web APIs thus have to decide whether

to create their own specialized media type, which reduces inter-

operability; use a generic one such as XML or JSON, which, with

a probability bordering on certainty, requires out-of-band

contracts and thus introduces coupling; or to create a specialized

media type on top of an existing, generic one. Unfortunately, even

just creating a specialization of an existing generic media type is

not as straightforward as it might seem at first sight.

On the one hand, it is not trivial to design a media type that is

general enough for a broad range of applications, yet useful. On

the other hand, it is difficult to find broad acceptance for a media

type that is only usable in a very specific application domain.

Obviously, if the media type introduces a new serialization

format, no existing libraries can be used to parse its represen-

tations forcing all clients to implement parsers specifically

designed for this new media type. While such an approach might

provide the best possible efficiency, it does not scale when the

number of services or even just the number of entities using

different media types in a single service increases. The often seen

practice of defining specialized media types for each entity type

used in an application is especially problematic as it promotes the

reuse of these specialized media types to design the application-

level data model. More than likely, such an approach will result in

tighter coupled systems at the model layer given that the same

data model is shared among all system components. The fact that

only very few of the more than 1,300 officially registered media

types [3] are in common use should be evidence enough that their

design is not trivial and requires a lot of expertise. Arguing that

every RESTful service should design its own specific media type

to document the contract with its clients is thus clearly impractical

and far from reality. It also indicates that generally, services either

stick to generic media types such as XML or JSON or do not

invest the necessary time and effort to register their proprietary

media types.

One of the main problems with media types is that they are orga-

nized in a very shallow, only two levels deep hierarchy. This

makes it impossible to define refinements or extensions in a way

which would make it possible to deduce those dependencies from

the media type’s identifier. Given that it is also impossible to

describe such dependencies in a machine-processable way in the

media type’s specification itself, the only available option is to

directly include that knowledge into a client’s code.

In principle the same applies to media types that build on top of

existing, generic media types such as XML or JSON. A common

pattern is to add, e.g., a +xml suffix to the media type identifier to

describe that it is based on XML’s syntax. Even though this prac-

tice has been standardized [4] (and been so for XML for more

than a decade) some client libraries still do not understand this

convention. To be fair, it is also not clear what libraries should do

with this information; all it tells is the serialization format. In

human-facing tools, such as browsers, this information might be

used to render a representation as if it would have been served

using the base type instead of not displaying it at all due to an

unknown media type. For programming libraries the situation is

much less clear as all that could be done is to parse the represen-

tation which, most of the time, is the most trivial aspect.

Looking, e.g., at XHTML, SVG, Atom, and RDF/XML it be-

comes clear that all these formats share is the serialization format.

The processing models and even the data models are completely

different. XHTML for instance deals with a document object tree

while RDF/XML is used to serialize graphs. In such cases it cer-

tainly makes sense to create specific media types. If, however, the

only difference lies in the semantics, i.e., the meaning of the seri-

alized data, it is questionable whether specialized media types are

required at all. The examples best illustrating this are probably

xCard [5] and xCal [6] as they are doing nothing more than speci-

fying XML-based serializations for vCard and iCalendar. Such

“micro-types” are the main reason for the often criticized prolifer-

ation of media types. The concern is that an abundance of media

types conflicts with REST’s emphasis on a uniform interface. The

more variability there is the more difficult interoperability be-

comes. Instead of requiring developers to create new media types

for every minor semantic difference, more generic media types

able to express the various semantics and mechanisms to signal

them at the HTTP layer are necessary. This will allow the creation

of composable contracts, improve the Web as a platform in gen-

eral, and simplify the development of Web APIs in particular.

2.1 An Alternative Approach
Both xCard and xCal are XML-based serializations and, as such,

use XML’s preferred solution to unambiguously bind elements

and attributes to the semantics of a specific vocabulary, namely

XML Namespaces [7]. The idea behind XML Namespaces is

simple: instead of using arbitrary strings as names for elements

and attributes, a vocabulary URI is defined which acts as a prefix

for all names that are part of said vocabulary. This has the

advantage that elements and attributes from multiple XML

markup vocabularies can be used within a single document with-

out risking that names clash. The fact that URIs are used as iden-

tifiers allows both a decentralized and a centralized creation and

management of XML namespaces; in fact, the IANA maintains a

registry specifically for XML namespaces [8].

The question arises why both xCard and xCal have a dedicated

media type if the semantics are already signaled using a dedicated

XML namespace. The reason is simple. If HTTP messages are not

typed using a media type, a processor has to look into the content

to decide how to process the message. This is not problematic per

se, but the real problem lies in the fact that most processors,

including browsers, have no mechanisms to leverage these exten-

sion points. Instead of passing the data to the most appropriate

application, they simply fall back to the basic behavior, which is,

in the case of XML in the browser, to simply display the XML

tree. Another, perhaps bigger, problem is the fact that content

negotiation is based on media types which makes it impossible for

a client to express its preferences if no dedicated media type exits.

This problem has been known for quite some time.

Inspired by HTML’s profile attribute [9], in 2009 Toby A. Inkster

started an effort [10] to register an optional profile parameter for

XML’s and JSON’s media types to address this issue. Similarly to

HTML’s profile attribute, the profile parameter was intended to

signal that a message conforms to some additional constraints or

conventions on top of the constraints and semantics imposed by

the media type or to convey some additional semantics. The value

of the profile parameter in Inkster’s proposal had to be a single

absolute IRI. If multiple profiles are applicable to the content, a

server should choose “the most useful” but “pay attention to any

of the profiles if found in the Accept header during content nego-

tiation” [10]. Unfortunately, Inkster’s Internet Draft was not

standardized but expired and most Web APIs continued to either

use the generic media type or to mint their own specialized type.

In 2012, Erik Wilde started a new initiative to standardize a simi-

lar mechanism. Instead of trying to change XML’s and JSON’s

media type registrations, he proposed [11] to standardize the link

relation profile to signal additional semantics associated with a

representation using an HTTP Link header [12]. While this

enables servers to advertise profiles in their responses, it leaves

the content negotiation problem unsolved. Wilde addressed this

shortcoming in a later revision of his draft by recommending that

newly defined media types should define a profile media type

parameter if appropriate. This allows clients to signal their capa-

bilities and preferences in the content negotiation process

allowing the server to return the best matching representation.

Another notable difference to Inkster’s proposal is that Wilde

removed the restriction to a single profile URI, meaning that

multiple profiles can be easily combined.

In light of these advances, the recent initiative [13] to standardize

dedicated media types for JSON-based versions of vCard and

iCalendar should be challenged [14]—especially considering that

most required parts already exist. The work to create a shared

vocabulary has already been started a couple of years ago at the

W3C [15] and JSON-LD [16] provides a way to serialize such

data in a JSON-based syntax. It also features a profile media type

parameter to signal the additional semantics and conventions at

the HTTP layer. The only missing piece is the definition of a

profile to specify which field names are used and how the data is

structured when serialized. This is necessary as JSON-only clients

depend on the structure and not directly on the semantics of the

serialization. Since JSON-LD represents graphs, most of the time,

there exist multiple ways to serialize the same data.

There are multiple advantages such profile-based approach offers.

First of all, the need for micro-types such as xCard would disap-

pear. It is true that the information is basically just shifted to the

profile parameter but the fact that profiles can be easily combined

means that the overall need for dedicated types or profiles is

reduced. This brings us to another benefit which is that, due to

their simple composability, the scope of profiles can be reduced

which simplifies their standardization. It is this composability

which allows the separation of concerns which is often missing in

media types. Leveraging profiles, generic media types defining a

serialization format can be combined with the concrete semantics

of a profile. Networking effects will ensure that a few well-known

and widely adopted profiles will emerge. At the same time it

becomes easier to bootstrap new profiles because, unlike newly

established media types, they do not suffer under a cold start

problem. Finally, given that profiles have the potential to make

the implicit semantics found in current Web APIs explicit, search

engines and other automated agents might start to crawl directly

the APIs instead of HTML representations of the same data.

3. THE WEB IS A GRAPH
The Web is a distributed hypermedia system at its core. It consists

of interlinked resources (mostly in the form of HTML documents)

forming a giant graph of knowledge. HTTP, the Hypertext

Transfer Protocol, is used to navigate and manipulate that graph

and Uniform Resource Identifiers (URIs) are used to uniquely

identify and, in most cases, also directly locate the nodes

(resources) the graph consists of. These aspects, the identification

of resources and the use of hypermedia to guide interaction, are

the base for REST’s uniform interface constraint. The two missing

architectural constraints in this description are the manipulation of

resource through representations and the requirement for

messages to be self-descriptive. Given that well-adopted standards

for Web APIs supporting them are still missing, it is not surprising

that exactly those two constraints are violated most often.

Even though there exist almost 500 media types in the standards

tree and another 900 in the vendor and personal trees in the media

type registry maintained by IANA [3], only very few support

hypermedia. The most often used data formats in Web APIs,

XML and JSON, are no exception to this. Given that the Web is

intended to be a distributed hypermedia system, this is

astonishing—to say the least.

For XML with its namespacing support the problem can be alle-

viated by reusing elements from a well-known markup vocabu-

lary. The W3C created the XML Linking Language (XLink) [17]

to fill this gap, but often Atom’s link element is used instead. In

JSON, the problem is not as easily solvable as it also lacks

support for namespacing. As we discussed in previous work [18],

there exist various efforts to add hypermedia support to JSON, but

so far no clear winner emerged. The consequence is that most

Web APIs invent their own proprietary conventions to represent

links; needless to say that almost none of them are tried to be

standardized.

JSON-LD [16] is an upcoming W3C standard trying to address

these shortcomings of JSON. It provides a generic, JSON-based

serialization format for graphs with inherent support for

hypermedia. Just as XML, its namespacing feature allows mixing

elements from various vocabularies to create mixed documents or

extend JSON-LD’s functionality. It also enables the creation of

self-descriptive messages. Meticulously chosen design decisions

were made to keep JSON-LD as simple as possible. The result is

that representations in JSON-LD usually look almost exactly the

same as they would in plain old JSON. To ensure that clients do

not have to depend on the structure and the fieldnames used in a

representation, a number of algorithms and a simple API [19] for

some basic document transformations haven been developed. This

is often necessary since, in contrast to a tree data model for which

there only exists one possible serialization, a graph can be

serialized in multiple ways. It also means that representations can

be optimized for JSON-only clients while at the same time

providing much more flexibility for clients understanding

JSON-LD. The fact that all properties and entities are uniquely

identified by IRIs greatly simplifies some of the most difficult

tasks when dealing with data at Internet-scale, most notably data

integration.

4. PUTTING EVERYTHING TOGETHER:

DOMAIN-DRIVEN WEB SERVICE DESIGN
Designing Web APIs that take advantage of REST’s benefits in

terms of scalability, maintainability, and evolvability is still more

an art than a science. Nevertheless, we are convinced that it is

possible to at least distill a number of guidelines and procedures

to assist developers in the complex design process.

Based on the experiences gained by implementing various

RESTful Linked Data-based APIs and drawing from a longer

history of Semantic Web and hypermedia research, we will pre-

sent an alternative, domain-driven approach as a first attempt to

address this issue in the next sections. We will give some sugges-

tion for concrete technologies and discuss their consequences.

4.1 Data Modeling
The first and most important step when creating a RESTful API,

or an application in general, is to understand the problem domain.

Based on that understanding, it is then possible to design the data

model representing the various domain entities and their proper-

ties. A commonly agreed model is fundamental to enable collabo-

ration between the various stakeholders working on the realization

of a Web API. Given that REST is a resource-oriented

architecture it should not come as a surprise that the modeling of

the resources, i.e., the entities, is a fundamental part of the design

process. The outcome of this process should be a formal descrip-

tion of the entities, their properties, and their relationships in the

problem domain. This is a task RDF has proven to be very

successful at.

Standardized RDF vocabularies such as RDF Schema or the Web

Ontology Language (OWL) formalize the necessary concepts to

describe an API’s data model or, more formally, ontology. The

advantage of using RDF which is based on a simple graph-based

data model is that the description can be created in exactly the

same format as all other data in the system. The resulting unified

view makes it possible to use the same tools for both defining the

data models and to work with the data itself. Another advantage of

an RDF-based system is the dramatically simplified reuse of

domain models—either as a whole or of parts thereof. Such reuse

not only dramatically reduces the inherent costs and risks but also

results in concrete benefits in terms of interoperability and adop-

tion. RDF’s data model uniquely embraces the inevitable

heterogeneity encountered when working with data at Internet-

scale. Furthermore, its schemalessness ensures the required agility
in today’s fast-moving world.

After the data model has been defined, it has to be decided how

the data is serialized. Fortunately, there exist already a number of

serialization formats for RDF. As JSON has become the prevalent

serialization format used in Web APIs, it clearly makes sense to

choose a format such as JSON-LD which combines the best of

both worlds, the simplicity of JSON with the semantic expres-

sivity of RDF. A special challenge lies in the fact that, in contrast

to trees as used in traditional JSON, graphs can be serialized in a

number of ways while still expressing the same data. While this

imposes no issues for clients processing the data as JSON-LD, it

requires special attention if JSON-only clients that rely purely on

the structure of the serialized data have to be supported as well.

The solution is to formalize the conventions used to serialize the

data and document them in a profile as described earlier. Both

JSON-only and JSON-LD aware clients can then seamlessly work
with the same data representations.

4.2 Behavioral Modeling
The data model defines how data is represented in the system.

This, in a sense, provides a static view of the system. To be able

to access and manipulate data through an API, the domain

application protocol [20] or, more formally speaking, the

behavioral model needs to be defined as well. Despite significant

research and development effort, the problem of describing

RESTful Web APIs in a machine-processable way is still to be

solved. Consequently, most Web APIs are solely documented in

the form of human-targeting, natural-language documents. Based

on the experience gained from our previous efforts to address this

problem, we designed Hydra [21], a lightweight vocabulary to

capture and document the behavioral model of hypermedia-driven

Web APIs in a machine-processable way.

Simply speaking, Hydra defines a number of concepts, such as

collections, commonly used in Web APIs and provides a vocabu-

lary that can be used to describe the domain application protocol

of services. Operations stand at the core of a Hydra-powered

description and allow the semantics of specific HTTP operations

to be documented. Specific operations can either be bound to

entity classes (types) or link relations (properties) or be used

directly within data representations. This allows agents to dis-

cover the affordances supported by the various entities in a Web

API. As result, it becomes possible to either build machine agents

that navigate Web APIs completely autonomously or to create

programming libraries with a much higher level of abstraction

simplifying developers’ lives. Since all the descriptions are repre-

sented in the same format as the data itself, even the code to

access an API can be transformed to a declarative description that

can be analyzed and worked with using the same tools—a very

powerful feature often referred to as the Principle of Least

Power [22]. A complete description of Hydra would go beyond

the scope of this paper and we would thus like to refer the

interested reader to [21] and [23] for more information.

The combination of a formal data model as described in the previ-

ous section and a holistic documentation of the behavioral model

based on Hydra enables the creation of declarative contracts

capturing all aspects of a Web APIs. It is worthy to note that, in

the spirit of domain-driven design, it is possible to map the con-

cepts defined in the model to those in the code implementing it. In

a prototype we presented in previous work [24], the mapping took

place in the form of code annotations. Entities were augmented

with instructions on how to serialize them to JSON-LD.

Furthermore, these annotations built the base to automatically

generate the code for simple controllers implementing the basic

CRUD functionality. Automatic code generation always imposes

the risk of either introducing unnecessary coupling or leaking

implementations details—this is especially risky if the contract is

owned by the server. The presented approach mitigates this

problem by allowing the problem domain to be decomposed into

smaller sub-problems that are significantly easier to standardize,

shifting the coupling to a central standard (or a combination of

multiple standards in the form of a profile).

4.3 Test Early, Test Often
While it is important to test early in the development process it is

often disproportionally difficult to do so when developing Web

APIs. Apart from low-level HTTP libraries, there exist no off-the-

shelf tools assisting developers in testing their API. The situation

looks similar for developing API clients. Given that the proposed

approach provides a unified view of the system, where all infor-

mation is represented in the same format, testing is dramatically

simplified.

The existence of standardized tools allows the verification of

different aspects of the system at very early stages, way before the

system has been implemented as a whole. This reduces risks costs

while, at the same time, improving the quality of the system.

Using off-the-shelf quad stores, e.g., it is possible to ensure that

the data model is expressive enough and structured in a way to

facilitate its usage by the various stakeholders. By augmenting the

behavioral model with sample responses for the various opera-

tions, it becomes possible to easily create mock services that can

help in developing clients even when the server does not exist yet.

Just as all other data, the test cases become an integrated part of

the data providing a holistic view of the system. This also allows

verifying that all required interactions are supported by the system

being built. Hydra’s core vocabulary [21] has no built-in support

for such sample responses yet, but it is planned to create an

extension which addresses it.

To further streamline and assist the development of Web APIs, we

developed generic clients for Hydra-based services which can be

used to run API “usability tests” similar to usability tests as

usually used for Web sites. This helps to ensure that the API is

usable without knowledge of server internals. Both the human-

facing single-page Web application HydraConsole and the generic

programming library HydraClient are available freely as open

source software [21].

4.4 Documenting Services
It takes time to convince developers to use such new models to

build their systems. Thus, everything that allows an iterative

introduction of these techniques helps to foster adoption. It will, at

least for the foreseeable future, still be important to provide

human-targeting documentation in addition to the machine-

processable service descriptions. Most developers are still better

in understanding prose than formal descriptions and proofs.

The process outlined in the previous sections has the unique

advantage that a lot of the otherwise implicit information about

the system is explicitly expressed in a machine-processable form.

The information from the data model and behavioral model can be

directly used to create large parts of human-targeting documen-

tations automatically. By utilizing technologies such as HTML

and RDFa it is even possible to combine the machine-processable

and the human-targeting documentation into a single document.

Since most of the lower-level details are either standardized or

already documented, humans can thus focus on augmenting the

documentation with information that really matter for developers:

the rationales behind design decisions, the assumptions made, the

mental models, and the overall goals of a Web API.

Recent advances in artificial intelligence suggest that in the near

future it will even become possible to automate the creation of

these natural-language descriptions. Narrative Science [25], e.g.,

has already built a commercial product which is able to generate

natural-language stories and reports for a wide variety of applica-

tions out of highly structure data. Extending it to API documen-

tations, which tend to be very similar, might just require a small

step.

5. CONCLUSIONS
In this position paper we presented an alternative, domain-driven

approach to design RESTful Web APIs. We discussed a number

of crucial design decision and showed how it is possible to create

Web APIs where almost all aspects are documented in a machine-

processable form. Not only does this result in an improved

reusability of domain models, either as a whole or of parts thereof,

but also in composable contracts that enhance the interoperability

between systems. The fact that all data, including the data

describing the system, is managed in a unified form, allows

testing to commence in much earlier stages of the development

process. This hopefully increases the quality of system build using

such an approach.

In future work we would like to develop tools assisting developers

in the various development stages. The generic API console and

client library presented in previous work was a first step into that

direction. We would also like to further experiment with the

implications of composable contracts based on profiles. Finally,

we would like to investigate to which degree human-readable

documentations are still needed, given that most parts of an API

can be standardized and remaining variability can be captured in

machine-readable descriptions. In the spirit of the principle of

least power, we do believe that in most cases it should be possible

to ship APIs without any additional human-targeting

documentation—Web sites typically do not need to be explained

either.

6. REFERENCES
[1] S. Speicher and M. Hausenblas, “Linked Data Platform 1.0,”

W3C Working Draft, 2012. [Online]. Available:

http://www.w3.org/TR/2012/WD-ldp-20121025/.

[2] R.T. Fielding, “Architectural styles and the design of

network-based software architectures,” PhD dissertation,

Department of Information and Computer Science,

University of California, Irvine, 2000.

[3] “MIME Media Types,” IANA. [Online]. Available:

http://www.iana.org/assignments/media-types. [Accessed:

22-Feb-2013].

[4] T. Hansen and A. Melnikov, “RFC6839: Additional Media

Type Structured Syntax Suffixes,” Internet Engineering Task

Force (IETF) Request for Comments, 2013. [Online].

Available: http://tools.ietf.org/html/rfc6839.

[5] S. Perreault, “RFC6351: xCard - vCard XML

Representation,” Internet Engineering Task Force (IETF)

Request for Comments, 2011. [Online]. Available:

http://tools.ietf.org/html/rfc6351.

[6] C. Daboo, M. Douglass, and S. Lees, “RFC6321: xCal - The

XML Format for iCalendar,” Internet Engineering Task

Force (IETF) Request for Comments, 2011. [Online].

Available: http://tools.ietf.org/html/rfc6321.

[7] T. Bray, D. Hollander, A. Layman, R. Tobin, and

H. S. Thompson, “Namespaces in XML 1.0 (Third Edition),”

W3C Recommendation, 2009. [Online]. Available:

http://www.w3.org/TR/xml-names/.

[8] “IANA XML Registry,” IANA. [Online]. Available:

http://www.iana.org/assignments/xml-registry-index.html.

[Accessed: 22-Feb-2013].

[9] D. Raggett, A. Le Hors, and I. Jacobs, “HTML 4.01

Specification: Meta data profiles,” W3C Recommendation,

1999. [Online]. Available:

http://www.w3.org/TR/html401/struct/global.html#h-7.4.4.3.

[10] T. A. Inkster, “The Profile Media Type Parameter,” 2009.

[Online]. Available: http://buzzword.org.uk/2009/draft-

inkster-profile-parameter-00.html. [Accessed: 21-Feb-2013].

[11] E. Wilde, “RFC6906: The ‘profile’ Link Relation Type,”

Internet Engineering Task Force (IETF) Request for

Comments, 2013. [Online]. Available:

http://tools.ietf.org/html/rfc6906.

[12] M. Nottingham, “RFC5988: Web Linking,” Internet

Engineering Task Force (IETF) Request for Comments,

2010. [Online]. Available: http://tools.ietf.org/html/rfc5988.

[13] C. Daboo, “jcardcal Working Group - JSON data formats for

iCalendar and vCard: Proposed charter,” IETF Applications

Area Working Group Wiki, 2013. [Online]. Available:

http://trac.tools.ietf.org/wg/appsawg/trac/wiki/jcardcal.

[Accessed: 24-Feb-2013].

[14] M. Lanthaler, “Re: [apps-discuss] iCalendar and vCard in

JSON: WG draft charter,” 2013. [Online]. Available:

http://www.ietf.org/mail-archive/web/apps-

discuss/current/msg08873.html. [Accessed: 24-Feb-2013].

[15] H. Halpin, R. Iannella, B. Suda, and N. Walsh, “Representing

vCard Objects in RDF,” W3C Member Submission, 2010.

[Online]. Available: http://www.w3.org/Submission/vcard-

rdf/. [Accessed: 24-Feb-2013].

[16] M. Sporny, G. Kellogg, and M. Lanthaler, “JSON-LD 1.0 –

A JSON-based Serialization for Linked Data,” W3C Editor’s

Draft, 2013. [Online]. Available: http://www.w3.org/TR/

json-ld/. [Accessed: 29-Mar-2013].

[17] S. DeRose, E. Maler, D. Orchard, and N. Walsh, “XML

Linking Language (XLink) Version 1.1,” W3C

Recommendation, 2010. [Online]. Available:

http://www.w3.org/TR/xlink11/.

[18] M. Lanthaler and C. Gütl, “On Using JSON-LD to Create

Evolvable RESTful Services,” in Proceedings of the

3rd International Workshop on RESTful Design (WS-REST)

at the 21st International World Wide Web Conference

(WWW2012), 2012, pp. 25-32.

[19] M. Lanthaler, G. Kellogg, and M. Sporny, “JSON-LD 1.0

Processing Algorithms and API,” W3C Editor’s Draft, 2013.

[Online]. Available: http://www.w3.org/TR/json-ld-api/.

[Accessed: 22-Feb-2013].

[20] S. Parastatidis, J. Webber, G. Silveira, and I. S. Robinson,

“The Role of Hypermedia in Distributed System Devel-

opment,” in Proceedings of the 1st International Workshop

on RESTful Design (WS-REST 2010), 2010, pp. 16-22.

[21] M. Lanthaler, “Hydra Core Vocabulary Specification,” 2013

(work in progress). [Online]. Available: http://www.markus-

lanthaler.com/hydra/. [Accessed: 22-Feb-2013].

[22] T. Berners-Lee, “Principles of Design,” Design Issues for the

World Wide Web, 1998. [Online]. Available:

http://www.w3.org/DesignIssues/Principles.html. [Accessed:

21-Feb-2013].

[23] M. Lanthaler and C. Gütl, “Hydra: A Vocabulary for

Hypermedia-Driven Web APIs,” in Proceedings of the

6th Workshop on Linked Data on the Web (LDOW2013) at

the 22nd International World Wide Web Conference

(WWW2013), 2013.

[24] M. Lanthaler, “Leveraging Linked Data to Build

Hypermedia-Driven Web APIs,” in REST: Advanced

Research Topics and Practical Applications, C. Pautasso,

E. Wilde, and R. Alarcón, Eds. Springer, 2013 (in press).

[25] Narrative Science. [Online] Available:

http://narrativescience.com/

