大模型从入门到应用——LangChain:快速入门-[安装与环境配置]

本文介绍了LangChain的安装与环境配置,展示了如何使用LangChain与OpenAIAPI构建语言模型应用程序。LangChain提供模块化的工具,如LLM、提示模板和记忆管理,用于开发复杂的聊天和自然语言处理应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类目录:《大模型从入门到应用》总目录

LangChain系列文章:


在《自然语言处理从入门到应用——LangChain:快速入门》系列文章中我们会用最简练的语言与示例带领大家快速调试并上手LangChain,读者读完本系列的文章后,就会对LangChain有一个大致的了解并可以将LangChain运用到自己开发的程序中。但如果读者想对LangChain的各个模块进行更深入的了解,可以继续学习《自然语言处理从入门到应用——LangChain》系列文章。本文主要是阐述了LangChain的安装与环境配置过程,最后还会带领读者通过LangChain搭建一个简单的LLM模型。

安装

使用以下命令安装 LangChain:

pip install langchain

或者:

conda install langchain -c conda-forge

环境设定

使用LangChain通常需要与一个或多个模型提供程序、数据存储、 API 等集成。对于这个例子,我们将使用OpenAI的API,所以我们首先需要安装OpenAI的SDK:

pip install openai

然后我们需要在终端设置环境变量:

export OPENAI_API_KEY="..."

或者,我们也可以在Jupyter Notebook或Python脚本内完成:

import os
os.environ["OPENAI_API_KEY"] = "..."

如果想动态设置API密钥,我们还可以在初始化OpenAI类时使用openai_api_key参数:

from langchain.llms import OpenAI
llm = OpenAI(openai_api_key="OPENAI_API_KEY")

构建语言模型应用程序: LLM

现在我们已经安装了LangChain并设置了我们的环境,我们可以开始构建我们的语言模型应用程序了。LangChain提供了许多可用于构建语言模型应用程序的模块。模块可以组合起来创建更复杂的应用程序,或者单独用于简单的应用程序。

LLM:从语言模型中获取预测

LangChain最基本的构建块是对某些输入调用LLM。假设我们正在构建一个基于公司产品生成公司名称的服务。为此,我们首先需要导入LLM包装器:

from langchain.llms import OpenAI
LLM初始化和调用

然后我们可以用任何参数初始化包装器。在这个例子中,我们可能希望输出更加随机,所以我们将以温度(Temperature)为0.9来初始化它。

llm = OpenAI(temperature=0.9)

我们现在可以根据一些输入调用它:

text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))

输出:

Feetful of Fun

关于如何在LangChain中使用LLM,《自然语言处理从入门到应用——LangChain》系列的后续文章会有详细的阐述。

提示模板(PromptTemplate): 管理 LLM 的提示

调用LLM是第一步,但这仅仅是个开始。通常在应用程序中使用LLM时,不会将用户输入直接发送到LLM。相反,我们更可能的是接受用户输入并构造一个提示符,然后将其发送给LLM。例如,在前一个示例中,我们传入的文本被硬编码为询问一家生产彩色袜子的公司的名称。在这个虚构的服务中,我们希望只获取描述公司业务的用户输入,然后用这些信息格式化提示符。如果使用LangChain,这个事情将会变得很简单。首先让我们定义提示模板:

from langchain.prompts import PromptTemplate
 
prompt = PromptTemplate(
    input_variables=["product"],
    template="What is a good name for a company that makes {product}?",
)

我们可以调用.format方法来格式化它。

print(prompt.format(product="colorful socks"))

输出:

What is a good name for a company that makes colorful socks?

参考文献:
[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

### 本地环境安装和配置 Langchain-Chatchat #### 创建并激活 Conda 虚拟环境 为了确保项目的独立性和稳定性,建议创建一个新的 Conda 环境来管理所需的软件包。通过命令 `conda create --name chatchat python=3.9` 可以建立名为 "chatchat" 的 Python 3.9 本的新环境[^2]。 接着,在终端输入 `conda activate ~/.anaconda3/envs/chatchat` 来激活此特定的 Anaconda 环境[^3]。 #### 下载 Langchain-Chatchat 和 Xinference 访问 GitHub 上官方仓库页面下载最新本的 Langchain-Chatchat 应用程序,地址为 https://github.com/chatchat-space/Langchain-Chatchat 。这一步骤可以通过克隆 Git 仓库完成,即运行如下指令: ```bash git clone https://github.com/chatchat-space/Langchain-Chatchat.git ``` 对于 Xinference 组件,则按照项目文档中的指导进行获取设置[^1]。 #### 安装依赖项 进入已下载的应用目录后,利用 pip 工具依据 requirements.txt 文件自动解析并安装所有必要的Python库文件。通常情况下只需执行以下命令即可实现自动化安装过程: ```bash pip install -r requirements.txt ``` 如果遇到权限问题或其他错误提示,请尝试加上 sudo 或者管理员身份重新操作上述命令;另外也可以考虑使用 venv 模块构建隔离式的 Python 运行空间以便更好地控制第三方模块本兼容性等问题。 #### 加载模型和服务启动 当所有的准备工作完成后,可以依次调用两个脚本来准备所需的大规模预训练语言模型及其嵌入表示形式: - 执行 Shell Script `./xinference_model.sh` 用于加载基础的语言理解能力; - 接着再运行另一个脚本 `./xinference_model_emb.sh` ,它负责初始化向量检索服务端口等额外功能支持。 最后,只需要简单地键入 `chatchat start -a` 即可全面开启整个聊天系统的运作状态,并允许外部客户端连接请求交互对话接口。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值