引言
作为AI开发者,你是否遇到过这样的问题:辛辛苦苦搭建好的Dify工作流,却只能在本地使用,无法快速复用到其他场景?今天,我们将通过MCP(模型上下文协议)协议,教你将Dify工作流转化为可调用的MCP工具,实现跨平台复用。本文将从零开始,分三步带你完成这一目标!
一、Dify工作流发布为工具
目标:将Dify工作流转换为可调用的API工具。
操作步骤:
- 进入Dify控制台
- 登录某Dify平台,进入“应用管理”页面。
- 选择已搭建好的工作流(例如“智能翻译助手”),点击“发布工具”。
- 配置工具参数
- 工具名称:输入工具的唯一标识(如
translate_tool
)。 - 工具描述:简要说明工具功能(如“支持中英互译,支持文件上传”)。
- 输入参数:定义工具接收的参数类型(例如:
text
为必填文本字段,file
为可选文件字段)。
- 工具名称:输入工具的唯一标识(如
- 生成工具ID
- 发布完成后,系统会生成一个工具ID(如
tool_12345
),记录此ID用于后续调用。
- 发布完成后,系统会生成一个工具ID(如
二、安装配置MCP Server插件
目标:通过插件将Dify工具暴露为MCP服务。
操作步骤:
- 安装MCP Server插件
- 在Dify插件市场搜索“MCP Server”,安装社区提供的插件(如“MCP-Server-Extension”)。
- 配置插件参数
- 进入插件配置页面,填写以下JSON结构:
{ </
- 进入插件配置页面,填写以下JSON结构: