11.7 堆排序

目录

11.7   堆排序

11.7.1   算法流程

11.7.2   算法特性


11.7   堆排序

Tip

阅读本节前,请确保已学完“堆“章节。

堆排序(heap sort)是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序。

  1. 输入数组并建立小顶堆,此时最小元素位于堆顶。
  2. 不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。

以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间。在实际中,我们通常使用一种更加优雅的实现方式。

11.7.1   算法流程

设数组的长度为 𝑛 ,堆排序的流程如图 11-12 所示。

  1. 输入数组并建立大顶堆。完成后,最大元素位于堆顶。
  2. 将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 1 ,已排序元素数量加 1 。
  3. 从堆顶元素开始,从顶到底执行堆化操作(sift down)。完成堆化后,堆的性质得到修复。
  4. 循环执行第 2. 步和第 3. 步。循环 𝑛−1 轮后,即可完成数组排序。

Tip

实际上,元素出堆操作中也包含第 2. 步和第 3. 步,只是多了一个弹出元素的步骤。

heap_sort_step11

图 11-12   堆排序步骤

在代码实现中,我们使用了与“堆”章节相同的从顶至底堆化 sift_down() 函数。值得注意的是,由于堆的长度会随着提取最大元素而减小,因此我们需要给 sift_down() 函数添加一个长度参数 𝑛 ,用于指定堆的当前有效长度。代码如下所示:

heap_sort.c

/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(int nums[], int n, int i) {
    while (1) {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        int l = 2 * i + 1;
        int r = 2 * i + 2;
        int ma = i;
        if (l < n && nums[l] > nums[ma])
            ma = l;
        if (r < n && nums[r] > nums[ma])
            ma = r;
        // 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
        if (ma == i) {
            break;
        }
        // 交换两节点
        int temp = nums[i];
        nums[i] = nums[ma];
        nums[ma] = temp;
        // 循环向下堆化
        i = ma;
    }
}

/* 堆排序 */
void heapSort(int nums[], int n) {
    // 建堆操作:堆化除叶节点以外的其他所有节点
    for (int i = n / 2 - 1; i >= 0; --i) {
        siftDown(nums, n, i);
    }
    // 从堆中提取最大元素,循环 n-1 轮
    for (int i = n - 1; i > 0; --i) {
        // 交换根节点与最右叶节点(交换首元素与尾元素)
        int tmp = nums[0];
        nums[0] = nums[i];
        nums[i] = tmp;
        // 以根节点为起点,从顶至底进行堆化
        siftDown(nums, i, 0);
    }
}

11.7.2   算法特性

  • 时间复杂度为 𝑂(𝑛log⁡𝑛)、非自适应排序:建堆操作使用 𝑂(𝑛) 时间。从堆中提取最大元素的时间复杂度为 𝑂(log⁡𝑛) ,共循环 𝑛−1 轮。
  • 空间复杂度为 𝑂(1)、原地排序:几个指针变量使用 𝑂(1) 空间。元素交换和堆化操作都是在原数组上进行的。
  • 非稳定排序:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManGo CHEN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值