11.10 基数排序

目录

11.10   基数排序

11.10.1   算法流程

11.10.2   算法特性


11.10   基数排序

上一节介绍了计数排序,它适用于数据量 𝑛 较大但数据范围 𝑚 较小的情况。假设我们需要对 𝑛=106 个学号进行排序,而学号是一个 8 位数字,这意味着数据范围 𝑚=108 非常大,使用计数排序需要分配大量内存空间,而基数排序可以避免这种情况。

基数排序(radix sort)的核心思想与计数排序一致,也通过统计个数来实现排序。在此基础上,基数排序利用数字各位之间的递进关系,依次对每一位进行排序,从而得到最终的排序结果。

11.10.1   算法流程

以学号数据为例,假设数字的最低位是第 1 位,最高位是第 8 位,基数排序的流程如图 11-18 所示。

  1. 初始化位数 𝑘=1 。
  2. 对学号的第 𝑘 位执行“计数排序”。完成后,数据会根据第 𝑘 位从小到大排序。
  3. 将 𝑘 增加 1 ,然后返回步骤 2. 继续迭代,直到所有位都排序完成后结束。

基数排序算法流程

图 11-18   基数排序算法流程

下面剖析代码实现。对于一个 𝑑 进制的数字 𝑥 ,要获取其第 𝑘 位 𝑥𝑘 ,可以使用以下计算公式:

𝑥𝑘=⌊𝑥𝑑𝑘−1⌋mod𝑑

其中 ⌊𝑎⌋ 表示对浮点数 𝑎 向下取整,而 mod𝑑 表示对 𝑑 取模(取余)。对于学号数据,𝑑=10 且 𝑘∈[1,8] 。

此外,我们需要小幅改动计数排序代码,使之可以根据数字的第 𝑘 位进行排序:

radix_sort.c

/* 获取元素 num 的第 k 位,其中 exp = 10^(k-1) */
int digit(int num, int exp) {
    // 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算
    return (num / exp) % 10;
}

/* 计数排序(根据 nums 第 k 位排序) */
void countingSortDigit(int nums[], int size, int exp) {
    // 十进制的位范围为 0~9 ,因此需要长度为 10 的桶数组
    int *counter = (int *)malloc((sizeof(int) * 10));
    // 统计 0~9 各数字的出现次数
    for (int i = 0; i < size; i++) {
        // 获取 nums[i] 第 k 位,记为 d
        int d = digit(nums[i], exp);
        // 统计数字 d 的出现次数
        counter[d]++;
    }
    // 求前缀和,将“出现个数”转换为“数组索引”
    for (int i = 1; i < 10; i++) {
        counter[i] += counter[i - 1];
    }
    // 倒序遍历,根据桶内统计结果,将各元素填入 res
    int *res = (int *)malloc(sizeof(int) * size);
    for (int i = size - 1; i >= 0; i--) {
        int d = digit(nums[i], exp);
        int j = counter[d] - 1; // 获取 d 在数组中的索引 j
        res[j] = nums[i];       // 将当前元素填入索引 j
        counter[d]--;           // 将 d 的数量减 1
    }
    // 使用结果覆盖原数组 nums
    for (int i = 0; i < size; i++) {
        nums[i] = res[i];
    }
}

/* 基数排序 */
void radixSort(int nums[], int size) {
    // 获取数组的最大元素,用于判断最大位数
    int max = INT32_MIN;
    for (size_t i = 0; i < size - 1; i++) {
        if (nums[i] > max) {
            max = nums[i];
        }
    }
    // 按照从低位到高位的顺序遍历
    for (int exp = 1; max >= exp; exp *= 10)
        // 对数组元素的第 k 位执行计数排序
        // k = 1 -> exp = 1
        // k = 2 -> exp = 10
        // 即 exp = 10^(k-1)
        countingSortDigit(nums, size, exp);
}

为什么从最低位开始排序?

在连续的排序轮次中,后一轮排序会覆盖前一轮排序的结果。举例来说,如果第一轮排序结果 𝑎<𝑏 ,而第二轮排序结果 𝑎>𝑏 ,那么第二轮的结果将取代第一轮的结果。由于数字的高位优先级高于低位,因此应该先排序低位再排序高位。

11.10.2   算法特性

相较于计数排序,基数排序适用于数值范围较大的情况,但前提是数据必须可以表示为固定位数的格式,且位数不能过大。例如,浮点数不适合使用基数排序,因为其位数 𝑘 过大,可能导致时间复杂度 𝑂(𝑛𝑘)≫𝑂(𝑛2) 。

  • 时间复杂度为 𝑂(𝑛𝑘)、非自适应排序:设数据量为 𝑛、数据为 𝑑 进制、最大位数为 𝑘 ,则对某一位执行计数排序使用 𝑂(𝑛+𝑑) 时间,排序所有 𝑘 位使用 𝑂((𝑛+𝑑)𝑘) 时间。通常情况下,𝑑 和 𝑘 都相对较小,时间复杂度趋向 𝑂(𝑛) 。
  • 空间复杂度为 𝑂(𝑛+𝑑)、非原地排序:与计数排序相同,基数排序需要借助长度为 𝑛 和 𝑑 的数组 res 和 counter 。
  • 稳定排序:当计数排序稳定时,基数排序也稳定;当计数排序不稳定时,基数排序无法保证得到正确的排序结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManGo CHEN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值