【元启发式优化算法】算术优化算法(AOA)

01.引言

算术优化算法 (AOA)利用数学中主要算术运算符的分布行为,包括 (乘法 、除法 、减法 和加法 )。AOA 经过数学建模和实现,可在广泛的搜索空间中执行优化过程。AOA 的性能根据 29 个基准函数和几个实际工程设计问题进行检查,以展示其适用性。通过不同的场景评估了所提出的 AOA 的性能、收敛行为和计算复杂性的分析。

02.优化算法的流程

​ 通常,基于群体的算法从一组随机生成的候选解决方案开始其改进过程(优化过程)。这组生成的解决方案通过一组优化规则逐步改进,并由特定的目标函数迭代评估;这就是优化方法的本质。由于基于群体的算法寻求随机找到优化问题的最佳解决方案,因此不能保证在一次运行中获得解决方案。然而,对于给定的问题,获得全局最优解的概率会因足够数量的随机解和优化迭代而增加。尽管元启发式算法在基于群体的优化方法领域存在差异,但优化过程包括两个主要阶段:探索与利用。前者是指使用算法的搜索代理来避免本地解决方案,从而广泛覆盖搜索空间。后者是在勘探阶段获得的解决方案的提高精度。

算术是数论的基本组成部分,它是现代数学的重要组成部分之一,与几何、代数和分析一样。算术运算符(即乘、除、减和加)是通常用于研究数字的传统计算度量我们使用这些简单的运算符作为数学优化,从一组候选备选方案(解决方案)中确定符合特定标准的最佳元素。从工程、经济学和计算机科学到运筹学和工业,所有定量学科都存在优化问题,求解技术的改进吸引了 Mathematics for Eras 的兴趣。拟议的 AOA 的主要灵感来自于在解决算术问题时使用算术运算符。在下面的小节中,将讨论算术运算符(即乘法、除法、减法和加法)的行为及其在所提出的算法中的影响。图 下显示了算术运算符的层次结构及其从外到内的主导地位。然后基于数学模型提出 AOA。

其伪代码如下:

03.论文中算法对比图

04.部分代码

% Arithmetic Optimizati
matlab最优化程序包括:无约束一维极值问题、进退法、黄金分割法、斐波那契法、牛顿法基本牛顿法、全局牛顿法、割线法、抛物线法、三次插值法、可接受搜索法、Goidstein法、Wolfe Powell法、单纯形搜索法、Powell法、最速下降法、共轭梯度法、牛顿法、修正牛顿法、拟牛顿法、信赖域法、显式最速下降法、Rosen梯度投影法、罚函数法、外点罚函数法、內点罚函数法、混合罚函数法、乘子法、G-N法、修正G-N法、L-M法、线性规划、单纯形法、修正单纯形法、大M法、变量有界单纯形法、整数规划、割平面法、分支定界法、0-1规划、二次规划、拉格朗曰法、起作用集算法、路径跟踪法、粒子群优化算法、基本粒子群算法、带压缩因子的粒子群算法、权重改进的粒子群算法、线性递减权重法、自适应权重法、随机权重法、变学习因子的粒子群算法、同步变化的学习因子、异步变化的学习因子、二阶粒子群算法、二阶振荡粒子群算法 (matlab optimization process includes Non-binding one-dimensional extremum problems Advance and retreat method Golden Section Fibonacci method of basic Newton s method Newton s method Newton s Law of the global secant method parabola method acceptable to the three interpolation search method Goidstein France Wolfe.Powell France Simplex search method Powell steepest descent method Conjugate gradient method Newton s method Newton s method to amend Quasi-Newton Method trust region method explicitly steepest descent method, Rosen gradient projection method Penalty function method outside the penalty function method within the penalty function method Mixed penalty function multiplier method G-N was amended in G-N method L-M method Of linear programming simplex method, revised simplex method Big M method variables bounded simplex method, Cutting Plane Method integer programming branch and bound method 0-1 programming quadratic programming )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB科研小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值