01.引言
算术优化算法 (AOA)利用数学中主要算术运算符的分布行为,包括 (乘法 、除法 、减法 和加法 )。AOA 经过数学建模和实现,可在广泛的搜索空间中执行优化过程。AOA 的性能根据 29 个基准函数和几个实际工程设计问题进行检查,以展示其适用性。通过不同的场景评估了所提出的 AOA 的性能、收敛行为和计算复杂性的分析。
02.优化算法的流程
通常,基于群体的算法从一组随机生成的候选解决方案开始其改进过程(优化过程)。这组生成的解决方案通过一组优化规则逐步改进,并由特定的目标函数迭代评估;这就是优化方法的本质。由于基于群体的算法寻求随机找到优化问题的最佳解决方案,因此不能保证在一次运行中获得解决方案。然而,对于给定的问题,获得全局最优解的概率会因足够数量的随机解和优化迭代而增加。尽管元启发式算法在基于群体的优化方法领域存在差异,但优化过程包括两个主要阶段:探索与利用。前者是指使用算法的搜索代理来避免本地解决方案,从而广泛覆盖搜索空间。后者是在勘探阶段获得的解决方案的提高精度。
算术是数论的基本组成部分,它是现代数学的重要组成部分之一,与几何、代数和分析一样。算术运算符(即乘、除、减和加)是通常用于研究数字的传统计算度量。我们使用这些简单的运算符作为数学优化,从一组候选备选方案(解决方案)中确定符合特定标准的最佳元素。从工程、经济学和计算机科学到运筹学和工业,所有定量学科都存在优化问题,求解技术的改进吸引了 Mathematics for Eras 的兴趣。拟议的 AOA 的主要灵感来自于在解决算术问题时使用算术运算符。在下面的小节中,将讨论算术运算符(即乘法、除法、减法和加法)的行为及其在所提出的算法中的影响。图 下显示了算术运算符的层次结构及其从外到内的主导地位。然后基于数学模型提出 AOA。
其伪代码如下:
03.论文中算法对比图
04.部分代码
% Arithmetic Optimizati