作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在大数据时代,多变量回归预测广泛应用于金融分析、能源管理、交通流量预测等领域。多变量数据中各变量间存在复杂的时空依赖和非线性关系,如何从海量数据中精准提取特征并实现准确预测,成为研究热点。Transformer-GRU、Transformer、CNN-GRU、GRU、CNN 这五种模型各有特色,为多变量回归预测提供了不同思路,接下来我们将深入探讨它们的原理、性能与应用。
一、多变量回归预测:挑战与需求
多变量回归预测旨在基于多个自变量的历史数据,预测一个或多个因变量的数值。例如在能源管理中,发电量、用电量、气温、电价等多个变量相互影响,共同决定未来某一时刻的电力供需情况。此类数据往往具有高维性、非线性和动态变化的特点,变量之间的关系错综复杂,传统回归模型难以捕捉这些复杂关系,而深度学习模型凭借强大的特征提取能力,成为解决该问题的有力工具。但不同的深度学习模型在处理多变量回归预测时各有优劣,选择合适的模型至关重要。
二、核心模型原理详解
2.1 GRU:门控循环单元
GRU(Gated Recurrent Unit)是循环神经网络(RNN)的一种改进变体,通过引入门控机制,有效缓解了 RNN 中梯度消失和梯度爆炸的问题,能够更好地处理长序列数据。GRU 包含更新门和重置门,更