【蛇群优化算法】基于蛇优化算法求解单目标优化问题附matlab代码

本文介绍了一种新的蛇优化器(SO),它模仿蛇的觅食和繁殖行为,用于解决工程和科学领域的优化问题。通过在多项基准测试和实际工程问题中的对比,SO展示了其在搜索效率和收敛速度上的优势。研究还详细展示了算法代码并展示了与多种经典及新算法的竞赛结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

近年来,在工程和科学领域引入了几种元启发式算法来解决现实生活中的优化问题。在这项研究中,提出了一种新的受自然启发的元启发式算法,称为蛇优化器 (SO),以解决模仿蛇特殊交配行为的各种优化任务。如果存在的食物量足够且温度低,每条蛇(雄性/雌性)都会争夺最佳伴侣。这项研究在数学上模拟和模拟了觅食和繁殖行为和模式,以提出一种简单有效的优化算法。为了验证所提出方法的有效性和优越性,SO 在 29 个无约束的进化计算大会 (CEC) 2017 基准函数和四个受约束的现实世界工程问题上进行了测试。将 SO 与其他 9 种著名的和新开发的算法进行比较,例如线性种群大小减少-差分进化的成功历史适应 (L-SHADE)、与 L-SHADE 结合的集成正弦曲线 (LSHADE-EpSin)、协方差矩阵适应进化策略 (CMAES)、土狼优化算法 (COA)、蛾火焰优化、哈里斯鹰优化器、热交换优化、蚱蜢优化算法和鲸鱼优化算法。实验结果和统计比较证明了 SO 在不同景观上的勘探开发平衡和收敛曲线速度的有效性和效率。

2 部分代码

%___________________________________________________________________%%  Snake Optimizer (SO) source codes version 1.0                    %               %%                                                                   %%___________________________________________________________________%close allclear allclcSearchAgents=30; Fun_name='F3';  Max_iterations=100; [lowerbound,upperbound,dimension,fitness]=fun_info(Fun_name);[Best_score,Best_pos,TSA_curve]=SO(SearchAgents,Max_iterations,dimension,lowerbound,upperbound,fitness);figure('Position',[400 400 560 190])subplot(1,2,1);func_plot(Fun_name);title('Objective space')xlabel('x_1');ylabel('x_2');zlabel([Fun_name,'( x_1 , x_2 )'])subplot(1,2,2);plot(TSA_curve,'Color','g','linewidth',2);hold ontitle('Objective space')xlabel('Iterations');ylabel('Best score');axis tightgrid onbox onlegend('SO')        

3 仿真结果

4 参考文献

[1] Mller B ,  Misiak D . SnakeOptimizer - Object Segmentation with Parametric Active Contours in ImageJ[C]// ImageJ User & Developer Conference 2012. 2012.​

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值