线性代数中的几何图形

线性代数中,比如某 2 维的向量\boldsymbol{v}_1 ,如果乘上系数k_1\in\mathbb{R} ,就可以表示它所在的、过原点的直线:

而有两个 2 维的线性无关向量\boldsymbol{v}_1 、\boldsymbol{v}_2 ,通过它们的线性组合k_1\boldsymbol{v}_1+k_1\boldsymbol{v}_2,k_1,k_2\in\mathbb{R} 就可以表示整个\mathbb{R^2} :

但如果我们不感兴趣过原点的直线和整个\mathbb{R}^2 ,而是别的一些几何图形,比如过\boldsymbol{v}_1 、\boldsymbol{v}_2 的直线(不过原点),或者以\boldsymbol{v}_1 、\boldsymbol{v}_2 为两端的线段,或者\boldsymbol{v}_1 、\boldsymbol{v}_2 、\boldsymbol{v}_3 、\boldsymbol{v}_4 围成的多边形,甚至一些曲线,那么线性代数能够帮到我们吗?

上述几何图形其实就是\mathbb{R^2} 的一部分,因此只需要对系数k_i 进行一些限制就可以办到,下面来具体解释下(本文不进行具体的推导了,只进行一些介绍)。

1 直线和平面

1.1 过\boldsymbol{v}_1 、\boldsymbol{v}_2 的直线

如果限制k_1+k_2=1 ,即令:

\boldsymbol{v}=k_1\boldsymbol{v}_1+k_2\boldsymbol{v}_2,\quad k_1+k_2=1

那么\boldsymbol{v} 就表示过\boldsymbol{v}_1 、\boldsymbol{v}_2 的直线:

 1.2 包含\boldsymbol{v}_1 、\boldsymbol{v}_2 和\boldsymbol{v}_3 的平面

如果再增加\boldsymbol{v}_3 ,还是限制系数之和为 1,即令:

\boldsymbol{v}=k_1\boldsymbol{v}_1+k_2\boldsymbol{v}_2+k_3\boldsymbol{v}_3,\quad k_1+k_2+k_3=1

此时\boldsymbol{v} 代表什么呢?可以这么来看,当k_3=0 的时候,得到的还是过\boldsymbol{v}_1 、\boldsymbol{v}_2 的直线:

 然后令k_3=1 、k_3=3 ,那么会得到与上述直线平行的直线:

 不断变换k_3 会得到所有平行直线,最终填满整个\mathbb{R}^2 。所以此时的\boldsymbol{v} 代表了包含\boldsymbol{v}_1 、\boldsymbol{v}_2 和\boldsymbol{v}_3 的平面,也就是\mathbb{R}^2 :

当然上述作法在\mathbb{R}^2 中没有必要,但是在\mathbb{R}^3 中就可以轻松表示包含\boldsymbol{v}_1 、\boldsymbol{v}_2 和\boldsymbol{v}_3 的平面:

2 线段和封闭区域

2.1 端点为\boldsymbol{v}_1 、\boldsymbol{v}_2 的线段

如果除了限制k_1+k_2=1 外,还要求系数都大于等于 0,即令:

\boldsymbol{v}=k_1\boldsymbol{v}_1+k_2\boldsymbol{v}_2,\quad k_1+k_2=1,k_{1,2}\ge 0

那么\boldsymbol{v} 就表示端点为\boldsymbol{v}_1 、\boldsymbol{v}_2 的线段:

 2.2 \boldsymbol{v}_1 、\boldsymbol{v}_2 和\boldsymbol{v}_3 围成的封闭区域

如果再增加\boldsymbol{v}_3 ,即令:

\boldsymbol{v}=k_1\boldsymbol{v}_1+k_2\boldsymbol{v}_2+k_3\boldsymbol{v}_3,\quad k_1+k_2+k_3=1,k_{1,2,3}\ge 0

k_3=0 的时候,得到的还是端点为\boldsymbol{v}_1 、\boldsymbol{v}_2 的线段:

 然后令k_3=0.4 、k_3=0.8 ,那么会得到下面的线段:

 

 不断变换k_3 最终会填满\boldsymbol{v}_1 、\boldsymbol{v}_2 和\boldsymbol{v}_3 围成的封闭区域。所以此时的\boldsymbol{v} 代表了\boldsymbol{v}_1 、\boldsymbol{v}_2 和\boldsymbol{v}_3 围成的封闭区域:

2.3 凸包

如果再增加一个\boldsymbol{v}_4 ,即令:

\boldsymbol{v}=k_1\boldsymbol{v}_1+k_2\boldsymbol{v}_2+k_3\boldsymbol{v}_3+k_4\boldsymbol{v}_4,\quad k_1+k_2+k_3+k_4=1,k_{1,2,3,4}\ge 0

那么\boldsymbol{v} 表示的不是像下面这样凹进去的图像:

它表示的是包含这 4 个点的凸出的图像:

用数学的语言就是,\boldsymbol{v} 表示的由\boldsymbol{v}_1 、\boldsymbol{v}_2 、\boldsymbol{v}_3 以及\boldsymbol{v}_4 构成的凸包,这也是一个重要的概念,在凸优化中会用到。

3 贝塞尔曲线

如下的\boldsymbol{v}_1 、\boldsymbol{v}_2 、\boldsymbol{v}_3 以及\boldsymbol{v}_4 会构成一个凸包:

如果像下面这样对系数进行限制:

\boldsymbol{v}=(1-t)^3\boldsymbol{v}_1+3t(1-t)^2\boldsymbol{v}_2+3t^2(1-t)\boldsymbol{v}_3+t^3\boldsymbol{v}_4,\quad 0\le t\le 1

那么\boldsymbol{v} 表示的就是该凸包内的一条曲线,也称为贝塞尔曲线:

声明:原创内容,未授权请勿转载,内容合作意见反馈联系公众号「马同学图解数学」: matongxue314

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值