达标的字符串

1、题目

给定一个数 NNN,想象只由 0 和 1 两种字符组成的所欲长度为 NNN 的字符串。

如果某个字符串,任何 0 字符的左边都有 1 紧挨着,认为这个字符串达标。

返回有多少达标的字符串。

2、思路

前几项推导:
请添加图片描述
两种解法:

1、观察法:1,2,3,5,8,131,2,3,5,8,131,2,3,5,8,13 的斐波那契数列

2、尝试法:

定义一个函数 int f(int i)f(i)f(i)f(i) 的含义是还有 iii 个格子需要填(填 0 或 1),但是有个潜台词——这 iii 个格子的前一个位置一定是 1 的情况下有多少个达标的。

如果 N=6N=6N=6,则函数调用的是 f(5)f(5)f(5),因为第 1 个格子一定是 1,剩下的 5 个格子需要填。

在已经确定了 iii 个格子的前一个位置是 1 的情况下,有多少种填法:

  • 1)iii 个格子的第一个位置填 1,则满足了 f(i−1)f(i-1)f(i1) 达标的条件
  • 2)iii 个格子的第一个位置填 0,则第二个位置一定要填 1 才可能达标,此时满足了 f(i−2)f(i-2)f(i2) 达标的条件

所以:f(i)=f(i−1)+f(i−2)f(i) = f(i-1) + f(i-2)f(i)=f(i1)+f(i2)

public class Code03_ZeroLeftOneStringNumber {
	//方法一:递归
	public static int getNum1(int n) {
		if (n < 1) {
			return 0;
		}
		return process(1, n);
	}

	public static int process(int i, int n) {
		if (i == n - 1) {
			return 2;
		}
		if (i == n) {
			return 1;
		}
        //第 i个格子填1 + 第 i 个格子填0,则i+1一定填1
		return process(i + 1, n) + process(i + 2, n);
	}
	
	//方法2:递归
	public static int getNum2(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1) {
			return 1;
		}
		int pre = 1;
		int cur = 1;
		int tmp = 0;
		for (int i = 2; i < n + 1; i++) {
			tmp = cur;
			cur += pre;
			pre = tmp;
		}
		return cur;
	}
	
	//方法3:矩阵乘法
	public static int getNum3(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return n;
		}
		int[][] base = { { 1, 1 }, { 1, 0 } };
		int[][] res = matrixPower(base, n - 2);
		return 2 * res[0][0] + res[1][0];
	}
	
	public static int[][] matrixPower(int[][] m, int p) {
		int[][] res = new int[m.length][m[0].length];
		for (int i = 0; i < res.length; i++) {
			res[i][i] = 1;
		}
		int[][] tmp = m;
		for (; p != 0; p >>= 1) {
			if ((p & 1) != 0) {
				res = product(res, tmp);
			}
			tmp = product(tmp, tmp);
		}
		return res;
	}

	// 两个矩阵乘完之后的结果返回
	public static int[][] product(int[][] a, int[][] b) {
		int n = a.length;
		int m = b[0].length;
		int k = a[0].length; // a的列数同时也是b的行数
		int[][] ans = new int[n][m];
		for(int i = 0 ; i < n; i++) {
			for(int j = 0 ; j < m;j++) {
				for(int c = 0; c < k; c++) {
					ans[i][j] += a[i][c] * b[c][j];
				}
			}
		}
		return ans;
	}

	public static void main(String[] args) {
		for (int i = 0; i != 20; i++) {
			System.out.println(getNum1(i));
			System.out.println(getNum2(i));
			System.out.println(getNum3(i));
			System.out.println("===================");
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值