目录
Python爬虫初学者学习指南
一、学习方向
- Python基础:掌握Python基础语法、文件处理、正则表达式(re模块)和数据处理(Pandas库)。
- HTTP与HTML解析基础:理解HTTP协议和HTML结构,学习请求库(Requests)和解析库(BeautifulSoup)。
- 动态页面处理:学习如何使用Selenium处理JavaScript动态加载内容。
- 反爬虫机制及应对方法:了解常见反爬虫机制,学习代理设置、请求头伪装、IP池等应对方法。
- 数据存储:学习如何将爬取的数据存储到CSV、JSON、数据库中,熟悉Pandas、SQLite等数据处理和存储工具。
- 实战案例:完成一些经典爬虫项目,如商品价格爬取、评论分析等,强化综合应用能力。
二、Python爬虫知识点总结
知识点 | 描述 | 常用方法或库 |
---|---|---|
HTTP基础 | 了解HTTP请求和响应,GET、POST、状态码等 | requests.get() 、requests.post() |
HTML结构解析 | 通过标签定位、CSS选择器、XPath解析HTML内容 | BeautifulSoup 、lxml |
正则表达式 | 使用正则表达式从文本中匹配特定模式的数据 | re 库、re.findall() |
动态内容爬取 | 处理JavaScript生成的动态数据,抓取动态加载的内容 | Selenium 、Pyppeteer |
代理与请求头伪装 | 防止被封禁,使用代理IP和伪装User-Agent | requests.Session() 、代理池 |
Cookies处理 | 模拟登录和保持会话,获取需要登录的页面 | requests.Session() , headers |
数据清洗与存储 | 清洗数据格式,保存到CSV、JSON或数据库中 | Pandas 、json 、sqlite3 |
多线程与异步爬取 | 提高爬取速度,使用多线程或异步编程 | concurrent.futures 、asyncio 、aiohttp |
反爬虫应对措施 | 随机请求头、延迟请求、使用代理IP等 | fake_useragent 、time.sleep() |
三、具体知识点详解和实现步骤
1. HTTP请求和HTML解析
通过 Requests
和 BeautifulSoup
库发送请求并解析内容。
import requests
from bs4 import BeautifulSoup
# 获取页面内容
url = "https://example.com"
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36'
}
response = requests.get(url, headers=headers)
# 解析HTML内容
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.find