ICCV 2019 | 旷视研究院提出基于互向导的半监督皮肤检测新方法

旷视研究院在ICCV 2019提出一种半监督的皮肤检测方法,利用互向导网络提升人体图像的皮肤检测性能。该方法无需皮肤和身体的混合标注数据,通过共享编码器和双任务解码器实现皮肤和身体的协同检测。实验表明,这种方法在皮肤检测领域达到最优效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两年一度的国际计算机视觉大会 ICCV 2019 ( IEEE International Conference on Computer Vision) 将于当地时间 10 月 27 至 11 月 2 日在韩国首尔举办。旷视研究院共有 11 篇接收论文,涵盖通用物体检测及数据集、文字检测与识别、半监督学习、分割算法、视频分析、影像处理、行人/车辆再识别、AutoML、度量学习、强化学习、元学习等众多领域。在此之前,旷视研究院将每周介绍一篇 ICCV 2019 接收论文,助力计算机视觉技术的交流与落地。

 

本文是第 3 篇,旷视研究院提出一种新的基于数据驱动的半监督的皮肤检测方法,用于实现人体图像的鲁棒皮肤检测。该网络可以半监督的方式训练,即不需要 groundtruth 的两个类型存在于一个训练数据样本之内。大量实验证明互向导、半监督损失以及多种训练策略的有效性。实验结果也表明本文方法是皮肤检测领域的当前最佳。

论文名称:Semi-supervised Skin Detection by Network with Mutual Guidance

论文地址:https://arxiv.org/abs/1908.01977

 

目录

 

  • 导语

  • 简介

  • 算法

    • Mutual Guidance

    • Learning Algorithm

      • Semi-supervised loss

        • Cross-entropy loss

        • CRF loss

        • WCE loss

  • 实验 

  • 结论

  • 参考文献

  • 往期解读

导语

 

皮肤检测旨在从图像和视频中发现皮肤颜色的像素和区域,这是一个非常有趣的问题,多作为一些深入应用的预处理步骤,比如人脸检测,姿势检测,网络内容的语义过滤等等。

由于皮肤根据其颜色及光照条件的不同而呈现出多种多样的变化,皮肤检测是一项相当具有挑战性的任务。

先前方法尝试在不同的色彩空间建模皮肤颜色,并训练皮肤分类器。但是,这些方法严重依赖皮肤颜色的分布,并且没有语义信息,导致性能欠佳。

近年来,随着深度神经网络的发展,虽然基于 DNN 的皮肤检测方法获得了可观的精度提升,但仍然受限于费钱费时的皮肤标注数据不足的影响。

简介

有鉴于此,旷视研究院提出通过身体检测为向导来提升皮肤检测的性能。如果一个身体掩膜(mask)可用,它对皮肤检测有两个好处。

第一,它为皮肤检测器提供一个先验信息,其中皮肤的较高概率是固定的;第二,检测到一个皮肤掩膜之后,它可过滤掉背景中的假阳性像素。

同时,把皮

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值