ECCV 2022 | 图像恢复的简单基线

本文探讨了深度学习在图像恢复领域的复杂性趋势,提出简单模型也能达到先进性能。研究建立了一个基于UNet结构的基线模型,进一步简化甚至去除了传统激活函数,命名为NAFNet,在图像恢复任务中表现出优异性能。NAFNet不仅在去噪和去模糊方面表现出色,还在图像超分任务上展现出潜力,并已开源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

714f42068e5b9af07f287370ac327bdc.gif

6a6b19405914a91aa19013feb28d4d28.jpeg

近年来,基于深度学习的图像降噪/去模糊的算法,在图像恢复领域取得了显著的进展。但与此同时,这些方法的系统复杂度相应的也在上升,如图1. 所示。

由此自然产生了一个问题,简单的模型是否也有可能达到最先进的性能?本文尝试回答这个问题,并给出肯定的答复。在本文中,我们先展示如何从零开始搭建一个简单同时性能优秀的基线模型,然后进一步简化该模型:我们发现甚至连传统的激活函数(如ReLU,GELU,Sigmoid等)都不是必须的:它们可以被去除或者被简单的乘法替代。

e50229261053d13b24fb8f9972cb772a.gif

图1. 当前一些图像恢复方法

如何从零搭建简单基线

深度学习模型通常是由一些基础操作(比如卷积/激活函数等)组合而成的模块(block)堆叠在一起构成的。我们先讨论堆叠模块的方式,然后再考虑模块内部的基础元素应该怎样选择。

81437759834c90fb08f7914642c3a159.jpeg

图2. UNet结构示意图

在各种深度学习方法蓬勃发展的当下,堆叠模块的方式也有许多不同方案,比如MPRNet[1]/HINet[2]等网络采用了多阶段的设计,将简单的结构串联起来;MIMO-UNet[3]等方法则考虑将各个不同空间大小的特征连接在一起。

而另一方面,我们发现简单的结构:UNet(如图2.)还是有一战之力的:当前一些性能优秀的方法[4],[5]是基于UNet或其变种。基于以上观察,我们认为UNet结构仍然

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值