AI 模型编译器 MegCC 开源,让推理引擎体积变小小小小小……

MegCC,由 MegEngine 团队开源,通过模型预编译减少推理引擎体积,提高性能。它将计算图优化、Kernel 选择等步骤移到编译过程,生成极轻量 Runtime 二进制,支持多种平台。用户可直接编译 MegEngine 模型,或将 ONNX 转换后进行编译,实现高效端侧推理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前社区中存在着不少个移动端深度学习推理框架(比如NCNN、MNN),它们为社区用户在移动端部署深度学习提供了相当多的便利,但是这些推理框架有一个共性问题:随着不断迭代以及性能优化,运行时库会逐渐增大,尤其是不同算子 fuse 时,会导致大量长尾算子,使 App 或 SDK 体积变得尾大不掉。

为了解决这个问题,由 MegEngine 团队开源的 MegCC 创新性地使用模型预编译方案,生成模型推理必要的代码,将与模型推理无关的代码去除,从而极大程度减小了推理引擎的体积。其主要方法是将传统框架运行时的必要步骤如计算图优化、Kernel 选择、内存分配等全部移到编译过程中,最大程度减少了 Runtime 时的二进制体积大小,并根据模型信息进行进一步的性能优化。

64410905192f0e0b6c2b644f8564fed0.png

GitHub 开源地址:https://github.com/MegEngine/MegCC

方案特点

  • 伴随框架的迭代将不再增大推理引擎体积

  • 算子融合可以在编译时根据模型信息生成对应的代码

  • 模型编译时可以获得整个计算图的信息,以便继续进行极致的性能优化

  • 可以吸收社区在代码生成方面的经验用于为 MegCC 生成代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值