在使用MegEngine进行模型训练时,首先要进行的是数据加载和预处理。在此过程中,MegEngine中的megengine.data(https://www.megengine.org.cn/doc/stable/zh/reference/data.html#module-megengine.data)模块,提供了数据分批功能,其内部实现流程如下图:
通过使用Dataloader,我们可以方便地对数据进行相关操作,比如设置batch_size以及自定义数据预处理的过程。示例代码如下:
from megengine.data import DataLoader
from megengine.data.dataset import ArrayDataset
from megengine.data.sampler import SequentialSampler
def init_dataset():
rand_data = np.random.randint(0, 255, size=(100, 1, 32, 32), dtype=np.uint8)
label = np.random.randint(0, 10, size=(100,), dtype=int)
dataset = ArrayDataset(rand_data, label)
return dataset
dataset = init_dataset()
dataloader = DataLoader(
dataset, sampler=SequentialSampler(dataset, batch_size=5)
)
for batch_data, batch_label in dataloader:
print(batch_data.shape)
break
在上面的代码中,我们用 ArrayDataset
(https://www.megengine.org.cn/doc/stable/zh/reference/api/megengine.data.dataset.ArrayDataset.html#megengine.data.dataset.ArrayDataset)对NumPy ndarray格式的数据集进行了快速封装, 接着使用顺序采样器 SequentialSampler
(https://www.megengine.org.cn/doc/stable/zh/reference/api/megengine.data.SequentialSampler.html#megengine.data.SequentialSampler)对 house_dataset
进行了采样, 二者用来作为参数初始化 DataLoader
(https://www.megengine.org.cn/doc/stable/zh/reference/api/megengine.data.DataLoader.html#megengine.data.DataLoader) , 最终获取到了一个可迭代的对象,每次提供 batch_size
大小的数据和标记。
len(dataloader) # 20
batch_data.shape # (5, 1, 32, 32)
batch_label.shape # (5,)
我们在上面选定的batch_size
为5,样本容量为100, 因此可以划分成20批数据。
Dataloader也支持用户自定义对数据做预处理操作,而在MegEngine中也定义很多图像处理领域的预处理方式,如图像裁剪、翻转等。更多DataLoader功能介绍,见文档:
https://www.megengine.org.cn/doc/stable/zh/user-guide/model-development/data/index.html
附
「MegEngine使用小技巧」系列文章,重点输出MegEngine及周边工具的使用技巧,如有催更或投稿,欢迎联系我们哦~
技术交流QQ 群:1029741705;Bot 微信:megengine-bot
更多MegEngine信息获取,您可以:查看文档:
(http://www.megengine.org.cn/doc/stable/zh/)和GitHub项目:
(https://github.com/MegEngine),欢迎参与MegEngine社区贡献,成为Awesome MegEngineer(http://www.megengine.org.cn/community-AMGE),荣誉证书、定制礼品享不停。