有一个整数数组 nums
,和一个查询数组 requests
,其中 requests[i] = [starti, endi]
。第 i
个查询求 nums[starti] + nums[starti + 1] + … + nums[endi - 1] + nums[endi]
的结果 ,starti
和 endi
数组索引都是 从 0
开始 的。
你可以任意排列 nums
中的数字,请你返回所有查询结果之和的最大值。由于答案可能会很大,请你将它对 109 + 7
取余 后返回。
示例 1:
输入:nums = [1,2,3,4,5], requests = [[1,3],[0,1]]
输出:19
解释:一个可行的 nums 排列为 [2,1,3,4,5],并有如下结果:
requests[0] -> nums[1] + nums[2] + nums[3] = 1 + 3 + 4 = 8
requests[1] -> nums[0] + nums[1] = 2 + 1 = 3
总和为:8 + 3 = 11。
一个总和更大的排列为 [3,5,4,2,1],并有如下结果:
requests[0] -> nums[1] + nums[2] + nums[3] = 5 + 4 + 2 = 11
requests[1] -> nums[0] + nums[1] = 3 + 5 = 8
总和为: 11 + 8 = 19,这个方案是所有排列中查询之和最大的结果。
示例 2:
输入:nums = [1,2,3,4,5,6], requests = [[0,1]]
输出:11
解释:一个总和最大的排列为 [6,5,4,3,2,1] ,查询和为 [11]。
示例 3:
输入:nums = [1,2,3,4,5,10], requests = [[0,2],[1,3],[1,1]]
输出:47
解释:一个和最大的排列为 [4,10,5,3,2,1] ,查询结果分别为 [19,18,10]。
提示:
n == nums.length
1 <= n <= 105
0 <= nums[i] <= 105
1 <= requests.length <= 105
requests[i].length == 2
0 <= starti <= endi < n
题意:重新排列数组,得到所有查询结果之和的最大值。
解法 差分+前缀和+贪心+排序
这一道题不太好想,不过仔细思考可知,如果我们把所有查询区间进行统计,就可以得到每个位置出现的次数。 只要我们把出现次数最多的位置分配给最大的数,次多的位置分配给次大的数……就可以得到所有查询结果之和的最大值。也就是依次将由大到小的数值分给由大到小的出现次数。例如:
输入:nums = [1,2,3,4,5], requests = [[1,3],[0,1]]
位置 出现次数
0 1
1 2
2 1
3 1
于是将位置1分配给数组中最大的数字5, 位置0、2、3依次分配给数组中的数字4、3、2, 位置5分配给1
得到: [4,5,3,2,1], 所有查询结果之和为: 4*1 + 5*2 + 3*1 + 2*1 = 19
代码如下,注意:查询数组长度可能有 10510^5105 ,每个查询区间的范围也可能很大,为此使用差分+前缀和进行统计。
#define LL long long
const int MAXN = 1e5 + 10;
const int MOD = 1e9 + 7;
int cnt[MAXN];
class Solution {
public:
int maxSumRangeQuery(vector<int>& nums, vector<vector<int>>& requests) {
int n = nums.size();
for (int i = 0; i <= n; ++i) cnt[i] = 0; //cnt清空
for (const vector<int>& r : requests) { //0<=r[0]<=r[1]<n, 差分数组
++cnt[r[0]];
--cnt[r[1] + 1];
}
for (int i = 1; i < n; ++i) cnt[i] += cnt[i - 1]; //前缀和,把原数组恢复过来
sort(nums.begin(), nums.end()); //两个数组排序
sort(cnt, cnt + n);
LL ans = 0; //对乘加即可
for (int i = 0; i < n; ++i) ans = (ans + 1LL * nums[i] * cnt[i]) % MOD;
return ans;
}
};
效率如下:
执行用时:912 ms, 在所有 C++ 提交中击败了100.00% 的用户
内存消耗:93.7 MB, 在所有 C++ 提交中击败了100.00% 的用户