LeetCode C++ 1589. Maximum Sum Obtained of Any Permutation【差分/前缀和/贪心/排序】中等

本文介绍了一个涉及数组重新排列的问题,目标是通过特定的算法获得所有查询区间和的最大值。利用差分、前缀和及排序等技巧实现最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有一个整数数组 nums ,和一个查询数组 requests ,其中 requests[i] = [starti, endi] 。第 i 个查询求 nums[starti] + nums[starti + 1] + … + nums[endi - 1] + nums[endi] 的结果 ,startiendi 数组索引都是 0 开始 的。

你可以任意排列 nums 中的数字,请你返回所有查询结果之和的最大值。由于答案可能会很大,请你将它对 109 + 7 取余 后返回。

示例 1:

输入:nums = [1,2,3,4,5], requests = [[1,3],[0,1]]
输出:19
解释:一个可行的 nums 排列为 [2,1,3,4,5],并有如下结果:
requests[0] -> nums[1] + nums[2] + nums[3] = 1 + 3 + 4 = 8
requests[1] -> nums[0] + nums[1] = 2 + 1 = 3
总和为:8 + 3 = 11。
一个总和更大的排列为 [3,5,4,2,1],并有如下结果:
requests[0] -> nums[1] + nums[2] + nums[3] = 5 + 4 + 2 = 11
requests[1] -> nums[0] + nums[1] = 3 + 5  = 8
总和为: 11 + 8 = 19,这个方案是所有排列中查询之和最大的结果。

示例 2:

输入:nums = [1,2,3,4,5,6], requests = [[0,1]]
输出:11
解释:一个总和最大的排列为 [6,5,4,3,2,1] ,查询和为 [11]

示例 3:

输入:nums = [1,2,3,4,5,10], requests = [[0,2],[1,3],[1,1]]
输出:47
解释:一个和最大的排列为 [4,10,5,3,2,1] ,查询结果分别为 [19,18,10]

提示:

  • n == nums.length
  • 1 <= n <= 105
  • 0 <= nums[i] <= 105
  • 1 <= requests.length <= 105
  • requests[i].length == 2
  • 0 <= starti <= endi < n

题意:重新排列数组,得到所有查询结果之和的最大值。


解法 差分+前缀和+贪心+排序

这一道题不太好想,不过仔细思考可知,如果我们把所有查询区间进行统计,就可以得到每个位置出现的次数。 只要我们把出现次数最多的位置分配给最大的数,次多的位置分配给次大的数……就可以得到所有查询结果之和的最大值。也就是依次将由大到小的数值分给由大到小的出现次数。例如:

输入:nums = [1,2,3,4,5], requests = [[1,3],[0,1]]
位置 出现次数
0    1
1    2
2    1
3    1
于是将位置1分配给数组中最大的数字5, 位置023依次分配给数组中的数字432, 位置5分配给1
得到: [4,5,3,2,1], 所有查询结果之和为: 4*1 + 5*2 + 3*1 + 2*1 = 19

代码如下,注意:查询数组长度可能有 10510^5105 ,每个查询区间的范围也可能很大,为此使用差分+前缀和进行统计

#define LL long long
const int MAXN = 1e5 + 10;
const int MOD = 1e9 + 7;
int cnt[MAXN];
class Solution {
public:
    int maxSumRangeQuery(vector<int>& nums, vector<vector<int>>& requests) {
        int n = nums.size();
        for (int i = 0; i <= n; ++i) cnt[i] = 0; //cnt清空
        for (const vector<int>& r : requests) { //0<=r[0]<=r[1]<n, 差分数组
            ++cnt[r[0]];
            --cnt[r[1] + 1];
        }
        for (int i = 1; i < n; ++i) cnt[i] += cnt[i - 1]; //前缀和,把原数组恢复过来 
        sort(nums.begin(), nums.end()); //两个数组排序
        sort(cnt, cnt + n);
        
        LL ans = 0; //对乘加即可
        for (int i = 0; i < n; ++i) ans = (ans + 1LL * nums[i] * cnt[i]) % MOD;
        return ans;
    }
};

效率如下:

执行用时:912 ms, 在所有 C++ 提交中击败了100.00% 的用户
内存消耗:93.7 MB, 在所有 C++ 提交中击败了100.00% 的用户
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值