1917 Problem B N的阶乘

本文探讨了如何处理大整数阶乘问题,通过自定义大整数结构和乘法运算,实现对超过标准整型范围的数值进行阶乘计算。代码示例使用C++实现,适用于需要精确计算大整数阶乘的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题 B: N的阶乘

时间限制: 1 Sec  内存限制: 32 MB

题目描述

输入一个正整数N,输出N的阶乘。

输入

正整数N(0<=N<=1000)

输出

输入可能包括多组数据,对于每一组输入数据,输出N的阶乘

样例输入

0
4
7

样例输出

1
24
5040

经验总结

本题考察的是大整数乘法,不难~~

AC代码

#include <cstdio>
#include <cstring>
struct bign
{
	int d[3000];
	int len;
	bign()
	{
		memset(d,0,sizeof(d));
		len=0;
	}
};
void multi(bign &a,int n)
{
	for(int i=n;i>1;i--)
	{
		int carry=0;
		for(int j=0;j<a.len;j++)
		{
			int temp=i*a.d[j]+carry;
			a.d[j]=temp%10;
			carry=temp/10;
		}
		while(carry!=0)
		{
			a.d[a.len++]=carry%10;
			carry/=10;
		}
		while(a.d[a.len-1]==0&&a.len>=2)
			a.len--;
	}
}
int main()
{
	int n;
	while(~scanf("%d",&n))
	{
		if(n==0)
			printf("1\n");
		else
		{
			bign a;
			a.d[a.len++]=1;
			multi(a,n);
			for(int i=a.len-1;i>=0;i--)
				printf("%d",a.d[i]);
			printf("\n");
		}
	}
	return 0;
}

 

### 第十三届蓝桥杯 Java B组 答案解析 #### 题目概述 第十三届蓝桥杯 Java B组的比赛涵盖了多种类型的编程问题,涉及算法设计、数据结构应用以及逻辑推理等方面的内容。以下是针对该赛事的部分题目及其解答的详细说明。 --- #### **A题:简单计算** 此题考察基本的数据处理能力,通常可以通过简单的算术运算完成。 ```java public class Main { public static void main(String[] args) { int result = (1 + 2 * 3 - 4 / 5); // 示例表达式 System.out.println(result); } } ``` 上述代码展示了如何通过优先级规则正确执行四则混合运算[^2]。 --- #### **B题:字符串操作** 本题主要测试选手对于字符串的操作技巧,可能涉及到子串提取、字符替换等内容。 ```java public class StringOperation { public static void main(String[] args) { String str = "bluebridge"; String subStr = str.substring(0, 5).toUpperCase(); // 提取并转换前五个字母为大写 System.out.println(subStr); } } ``` 这里利用 `substring` 方法截取指定区间的字符串,并调用 `toUpperCase()` 将其转为大写字母形式[^3]。 --- #### **C题:数组遍历与统计** 此类问题一般要对给定的一维或多维数组进行特定条件下的计数或者和等操作。 ```java import java.util.Arrays; public class ArraySum { public static void main(String[] args) { int[] array = {1, 2, 3, 4, 5}; Arrays.sort(array); // 排序以便后续查找 long sumEven = Arrays.stream(array).filter(n -> n % 2 == 0).asLongStream().sum(); System.out.println(sumEven); // 输出偶数总和 } } ``` 借助于流(Stream API),可以高效地筛选符合条件的元素并累加它们的结果。 --- #### **D题:动态规划入门** 关于动态规划的应用场景之一便是解决经典的背包问题或路径优化等问题。 假设我们面临的是一个典型的完全背包变种情况,则状态转移方程可定义如下: 设 dp[i][j] 表示从前 i 种物品中选取若干件放入容量不超过 j 的背包所能获得的最大价值。 初始设定 dp[0][*]=0 ,即没有任何商品可供挑选时收益恒等于零;接着逐步填充表格直至得出最终结论。 ```java public class KnapsackProblem { private final int MAX_WEIGHT = 10; public int knapSack(int W, int wt[], int val[]) { int[][] dp = new int[W+1][wt.length]; for(int w=0;w<=W;w++)for(int i=0;i<wt.length;i++){ if(i==0){ dp[w][i]=(w>=wt[i])?val[i]:0; }else{ if(w<wt[i]){ dp[w][i]=dp[w][i-1]; }else{ dp[w][i]=Math.max(dp[w][i-1],val[i]+dp[w-wt[i]][i]); } } } return dp[W][wt.length-1]; } } ``` --- #### **E题:图论基础** 当遇到有关连通性判断或是最短距离测量之类的命题时,往往需要用到广度优先搜索(BFS) 或者迪杰斯特拉(Dijkstra's Algorithm) 来辅助决策制定过程。 下面给出基于队列实现 BFS 查找两节点间最小步数的一个例子: ```java import java.util.LinkedList; import java.util.Queue; class Pair<U,V>{ U first; V second; public Pair(U u ,V v){this.first=u; this.second=v;} } public class GraphTraversal { boolean bfs(boolean [][] adjMatrix,int startNode,int endNode ){ Queue<Pair<Integer,Integer>> q=new LinkedList<>(); boolean [] visited=new boolean [adjMatrix.length]; q.add(new Pair<>(startNode,-1)); while(!q.isEmpty()){ Pair<Integer,Integer> currentPair=q.poll(); Integer currentNode=currentPair.first; if(currentNode.equals(endNode))return true; if(!visited[currentNode]){ visited[currentNode]=true; for(int neighborIndex=0 ;neighborIndex <adjMatrix[currentNode].length; ++neighborIndex ) if(adjMatrix[currentNode][neighborIndex]) q.offer(new Pair<>(neighborIndex,currentNode)); } } return false ; } } ``` --- #### **F题:高级数学建模** 某些复杂情境下还需要运用到组合数学原理来推导公式进而简化实际编码难度。比如排列组合关系式的构建就需要熟悉阶乘函数性质以及二项式系数概念等等。 --- #### 结果总结 以上仅列举了几道典型习题的大致思路框架供参考学习使用。具体每一道小问还需参照官方标准文档进一步核实确认无误后再提交作答哦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值