题目描述:
向一个空栈中依次存入正整数,
假设入栈元素n(1<=n<=2^31-1)按顺序依次为nx...n4、n3、n2、n1,
每当元素入栈时,如果n1=n2+...+ny(y的范围[2,x],1<=x<=1000),则n1~ny全部元素出栈,重新入栈新元素m(m=2*n1)。
如:依次向栈存入6、1、2、3,
当存入6、1、2时,栈底至栈顶依次为[6、1、2];
当存入3时,3=2+1,3、2、1全部出栈,重新入栈元素6(6=2*3),此时栈中有元素6;因为6=6,所以两个6全部出栈,存入12,最终栈中只剩一个元素12。
输入描述:
使用单个空格隔开的正整数的字符串,如"5 6 7 8", 左边的数字先入栈,输入的正整数个数为x,1<=x<=1000。
输出描述:
最终栈中存留的元素值,元素值使用空格隔开,如"8 7 6 5", 栈顶数字在左边。
补充说明:
示例1
输入:
5 10 20 50 85 1
输出:1 170
说明:5+10+20+50=85, 输入85时,5、10、20、50、85全部出栈,入栈170,最终依次出栈的数字为1和170。
示例2
输入:
6 7
计算堆栈中的剩余数字
于 2024-09-10 08:30:00 首次发布