LeetCode 883. 三维形体投影面积

本文探讨了在N*N网格中放置与x,y,z轴对齐的1*1*1立方体的问题,旨在计算从顶部、前面和侧面观察时立方体的投影总面积。通过分析立方体在xy、yz和zx平面上的投影,提供了详细的算法实现,包括底部视图、行最大值和列最大值的计算,以得出总面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 题目

N * N 的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1 立方体。

每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上。

现在,我们查看这些立方体在 xy、yz 和 zx 平面上的投影。

投影就像影子,将三维形体映射到一个二维平面上。

在这里,从顶部、前面和侧面看立方体时,我们会看到“影子”。

返回所有三个投影总面积

示例 1:
输入:[[2]]
输出:5

示例 2:
输入:[[1,2],[3,4]]
输出:17
解释:
这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)

在这里插入图片描述

示例 3:
输入:[[1,0],[0,2]]
输出:8

示例 4:
输入:[[1,1,1],[1,0,1],[1,1,1]]
输出:14

示例 5:
输入:[[2,2,2],[2,1,2],[2,2,2]]
输出:21
 
提示:
1 <= grid.length = grid[0].length <= 50
0 <= grid[i][j] <= 50

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/projection-area-of-3d-shapes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题

  • 底视图,不为0的个数
  • 另外两个视图,行或者列的最大值
class Solution {
public:
    int projectionArea(vector<vector<int>>& grid) {
        int bot = 0, left = 0, front = 0, i, j;
        for(i = 0; i < grid.size(); ++i)
        {
        	for(j = 0; j < grid[0].size(); ++j)
        	{
        		if(grid[i][j] != 0)
        			++bot;//底部,不为0 就有
        	}
        }
        int max;
        for(i = 0; i < grid.size(); ++i)
        {
        	max = 0;
        	for(j = 0; j < grid[0].size(); ++j)
        	{
        		if(grid[i][j] > max)
        			max = grid[i][j];//每行的最大值
        	}
        	left += max;
        }
        for(j = 0; j < grid[0].size(); ++j)
        {
        	max = 0;
        	for(i = 0; i < grid.size(); ++i)
        	{
        		if(grid[i][j] > max)
        			max = grid[i][j];//每列的最大值
        	}
        	front += max;
        }
        return front+left+bot;
    }
};

4 ms 9.2 MB

优化一次遍历

class Solution {
public:
    int projectionArea(vector<vector<int>>& grid) {
        int i, j, ans = 0, s1 = 0, s2 = 0;
        for(i = 0; i < grid.size(); ++i) 
        {
            s1 = s2 = 0;
            for(j = 0; j < grid.size(); ++j) 
            {
                if(grid[i][j] > 0) 
                    ans++;  //底视图
                s1 = max(s1, grid[i][j]);//行最大
                s2 = max(s2, grid[j][i]);//列最大
            }
            ans += s1 + s2;
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Michael阿明

如果可以,请点赞留言支持我哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值