DeepSeek 下一代技术提前曝光!梁文锋署名论文获 ACL2025 最佳论文奖

戳下方名片,关注并星标

回复“1024”获取2TB学习资源!

👉体系化学习:运维工程师打怪升级进阶之路 4.0

—   特色专栏  —

MySQL/PostgreSQL/MongoDB

ElasticSearch/Hadoop/Redis

Kubernetes/Docker/DevOps

Kafka/RabbitMQ/Zookeeper

监控平台/应用与服务/集群管理

Nginx/Git/Tools/OpenStack

大家好,我是民工哥!

DeepSeek下一代技术提前曝光!

梁文锋署名论文获 ACL2025 最佳论文奖。

在2025年7月30日于奥地利维也纳举行的ACL 2025颁奖典礼上,由DeepSeek创始人梁文锋作为通讯作者、与北京大学等联合发表的论文《Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention》荣获最佳论文奖。

这一荣誉不仅彰显了DeepSeek在人工智能领域的卓越贡献,也预示着下一代大模型技术的重大突破。

该论文提出的原生稀疏注意力(NSA)机制,通过算法与硬件的协同优化,实现了长文本处理速度的显著提升。

具体而言,NSA机制采用了一种动态分层的稀疏策略,通过三条并行的注意力分支协同工作:

  • 压缩注意力:负责捕捉粗粒度的全局信息模式,就像快速浏览全文抓住大意。

  • 选择性注意力:专注于序列中最重要的词块,相当于精读关键段落。

  • 滑动注意力:获取局部的上下文信息,确保细节不丢失。

这种设计最精妙的地方在于,它不是简单地丢弃信息,而是通过精心设计的算法平衡了计算密度。

更重要的是,整个架构针对现代GPU硬件进行了深度优化,实现了端到端的原生可训练模式。

在实际测试中,NSA机制展现出了惊人的速度优势。处理64k长度序列时,NSA在解码、前向传播和反向传播的全生命周期中都实现了显著的速度提升:

  • 解码阶段速度提升11.6倍

  • 前向传播提升9倍

  • 反向传播也有6倍的加速

速度快只是NSA的一面,更让人惊讶的是它在各项基准测试中的表现。在通用基准测试中,采用NSA预训练的27B参数模型在9个评测指标中有7个超越了全注意力基线。

特别是在推理相关的基准测试上,DROP提升了0.042,GSM8K提升了0.034,显示出稀疏注意力在强制模型聚焦关键信息方面的独特优势。

长文本处理能力的测试结果更是亮眼。在64k上下文的“大海捞针”测试中,NSA在所有位置都实现了完美的检索准确率。

在LongBench基准测试上,NSA取得了0.469的平均分,不仅超越了全注意力基线(+0.032),更是大幅领先其他稀疏注意力方法。

论文一作袁境阳在会上发表演讲,透露NSA技术可以把上下文长度扩展到1百万tokens,这一特性使其成为下一代大模型的理想选择。

结合论文发表于DeepSeek-R1推出之后,且实验设置中提到使用了DeepSeek-R1的蒸馏数据来微调新的模型,业界纷纷猜测,NSA技术将被应用于下一代DeepSeek-V4以及DeepSeek-R2。

DeepSeek提出的NSA机制,不仅解决了长文本处理的致命瓶颈,更揭示了AI技术未来发展的关键路径。

其硬件优化内核设计使实际推理速度与理论加速比高度吻合,彻底打破了“稀疏注意力推理效率低下”的行业魔咒。

此外,NSA机制还为教育、医疗等场景的AI应用打开了新空间,使长文本生成实时性得到显著提升。

👍 既然都看到这里了,如果觉得不错,随手点个赞、在看、转发三连吧,如果想第一时间收到推送,也可以给我个星标⭐~

公众号读者专属技术群

构建高质量的技术交流社群,欢迎从事后端开发、运维技术进群(备注岗位,已在技术交流群的请勿重复添加微信好友)。主要以技术交流、内推、行业探讨为主,请文明发言。广告人士勿入,切勿轻信私聊,防止被骗。

扫码加我好友,拉你进群

PS:因为公众号平台更改了推送规则,如果不想错过内容,记得读完点一下在看,加个星标,这样每次新文章推送才会第一时间出现在你的订阅列表里。点在看支持我们吧!

标题基于SpringBoot的计算思维与人工智能学习网站设计与实现AI更换标题第1章引言介绍计算思维与人工智能学习网站的研究背景、意义、国内外现状以及论文方法和创新点。1.1研究背景与意义阐述计算思维与人工智能教育的重要性及网站建设的必要性。1.2国内外研究现状分析国内外计算思维与人工智能学习网站的发展现状。1.3研究方法及创新点简述论文采用的研究方法及网站设计的创新之处。第2章相关理论总结计算思维、人工智能及网站开发相关理论,为研究提供理论基础。2.1计算思维理论概述介绍计算思维的基本概念、核心要素及应用领域。2.2人工智能基础理论阐述人工智能的基本原理、关键技术及发展趋势。2.3网站开发技术基础概述SpringBoot框架、前端技术及数据库技术等相关知识。第3章网站设计详细介绍基于SpringBoot的计算思维与人工智能学习网站的设计方案。3.1网站架构设计网站的整体架构,包括前端、后端及数据库设计。3.2功能模块设计阐述网站各功能模块的设计,如用户管理、课程学习、在线测试等。3.3数据库设计介绍数据库的设计思路,包括表结构、关系及索引设计等。第4章网站实现阐述基于SpringBoot的计算思维与人工智能学习网站的具体实现过程。4.1开发环境搭建介绍开发所需的软件、硬件环境及配置步骤。4.2关键技术实现详述SpringBoot框架的集成、前后端交互及数据库操作等关键技术的实现。4.3网站测试与优化网站测试的方法、过程及优化策略,确保网站稳定运行。第5章研究结果与分析呈现网站设计与实现后的效果,通过用户反馈、数据统计等方式进行分析。5.1用户反馈分析收集并分析用户对网站的反馈意见,评估网站的用户体验。5.2数据统计与分析统计网站访问量、用户活跃度等数据,分析网站的使用情况。5.3对比方法分析将本网站与其他类似网站进行对比分析,突出本网站的特色和优势。第6章结论与展望总结网
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值