pytorch 分布式

本文介绍了在深度学习中使用PyTorch的分布式训练,通过`torch.distributed.get_rank()`获取当前进程组的排名。同时,针对同步问题,提出了使用`torch.distributed.barrier()`确保所有进程在下载模型时保持同步的策略,并讨论了重试机制作为解决不同步问题的一种简单方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

返回当前进程组的排名

torch.distributed.get_rank() # 返回当前进程组的排名

同步进程

参考 GitHub

        # if torch.distributed.get_rank() == 0:
        #     torch.distributed.barrier()  # Make sure only the first process in distributed training will download model

不同步问题解决方案

其实最省事省力的方法就是retry, 参考 pypi

from retrying import retry
@retry(stop_max_attempt_number=5)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值