【OR-notes】Dual Problem

本文探讨了拉格朗日对偶问题,包括最大化问题的求解,以及弱对偶性和强对偶性的概念及其应用。通过实例演示了线性规划和二次规划中的对偶问题,并介绍了斯莱特约束条件。文章重点讲解了如何利用斯莱特条件确保在凸问题中弱对偶等于强对偶,以及如何验证严格可行条件下的对偶最优性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lagrange dual problem

max ⁡ g ( λ , ν ) s . t . λ ≥ 0 \begin{aligned} &\max &g(\lambda, \nu)\\ &s.t. &\lambda\geq 0 \end{aligned} maxs.t.g(λ,ν)λ0

  • Find the best lower bound p ∗ p^* p
  • CVX problem, the optimal value is d ∗ d^* d
  • λ , ν \lambda, \nu λ,ν are dual feasible of λ ≥ 0 , ( λ , ν ) ∈ d o m g \lambda\geq 0, (\lambda, \nu)\in dom g λ0,(λ,ν)domg

Weak dual and Strong dual

weak duality: d ∗ ≤ p ∗ d^*\leq p^* dp.
strong duality: d ∗ = p ∗ d^*=p^* d=p. usually hold in convex problem. Add some constrained qualification, make strong duality hold.

illustration

min ⁡ f 0 ( x ) s . t . f i ( x ) ≥ 0 \begin{aligned} &\min &f_0(x)\\ &s.t. & f_i(x)\geq 0 \end{aligned} mins.t.f0(x)fi(x)0
Define g ( λ ) = inf ⁡ ( u , t ) ∈ G ( t + λ u ) , G = { ( f 1 ( x ) , f 0 ( x ) ) ∣ ∃ x ∈ D } g(\lambda)=\inf_{(u, t)\in G}(t+\lambda u), G=\{(f_1(x), f_0(x))| \exist x\in D\} g(λ)=inf(u,t)G(t+λu),G={(f1(x),f0(x))xD}. Expand the direction of u and t:
A = { ( u , t ) ∣ f 1 ( x ) ≤ u , f 0 ( x ) ≤ t , for some  x ∈ D } A=\{(u, t)| f_1(x)\leq u, f_0(x)\leq t, \text{for some } x\in D\} A={(u,t)f1(x)u,f0(x)t,for some xD}
Proof the assertion: if f 1 ( x ) f_1(x) f1(x) and f 0 ( x ) f_0(x) f0(x) are convex. Let ( u 1 , t 1 ) , ( u 2 , t 2 ) ∈ A (u_1, t_1), (u_2, t_2)\in A (u1,t1),(u2,t2)A. θ u 1 + ( 1 − θ ) u 2 ∈ A \theta u_1+(1-\theta)u_2\in A θu1+(1θ)u2A.
∃ x 1 f 1 ( x 1 ) ≤ u 1 ∃ x 2 f 1 ( x 2 ) ≤ u 2 → f ( θ x 1 + ( 1 − θ ) x 2 ) ≤ θ f ( x 1 ) + ( 1 − θ ) f ( x 2 ) ≤ θ u 1 + ( 1 − θ ) u 2 \begin{aligned} &\exist x_1 & f_1(x_1)\leq u_1\\ &\exist x_2 & f_1(x_2)\leq u_2\\ &\rightarrow &f(\theta x_1+(1-\theta)x_2)\leq \theta f(x_1)+(1-\theta)f(x_2)\leq \theta u_1+(1-\theta)u_2 \end{aligned} x1x2f1(x1)u1f1(x2)u2f(θx1+(1θ)x2)θf(x1)+(1θ)f(x2)θu1+(1θ)u2

Slater’s constraint condition

String duality holds for a convex problem:
min ⁡ f 0 ( x ) s . t . f i ( x ) ≤ 0 i = 1 , 2 , … , m A x = b \begin{aligned} &\min & f_0(x)\\ &s.t. & f_i(x)\leq 0 & i=1,2,\dots, m\\ &&Ax=b \end{aligned} mins.t.f0(x)fi(x)0Ax=bi=1,2,,m
If it is strictly feasible i.e.; ∃ x ∈ i n t D , f i ( x ) < 0 , A x = b \exists x\in int D, f_i(x)<0, Ax=b xintD,fi(x)<0,Ax=b. The following conclusions are hold:

  • also guarantees that dual optimal d ∗ d^* d is attained of p ∗ > − ∞ p^*>-\infty p>.
  • ReInt C= { x ∈ A f f C ∣ B ( x , r ) ∩ A f f C ∈ C for some  r > 0 } \{x\in Aff C| B(x, r)\cap Aff C \in C \text{for some }r>0\} {xAffCB(x,r)AffCCfor some r>0}.
  • linear inequality do not need to hold with strict inequality.

Demo: Inequality form LP

primal problem:
min ⁡ c ′ x s . t . A x ≤ b \begin{aligned} &\min & c'x\\ &s.t.& Ax\leq b \end{aligned} mins.t.cxAxb
dual function:
g ( λ ) = inf ⁡ x ( ( c + A ′ λ ) x − b ′ λ ) = { − b ′ λ , A ′ λ + c = 0 − ∞ , O . W . g(\lambda)=\inf_x ((c+A'\lambda)x-b'\lambda)= \left\{ \begin{aligned} &-b'\lambda, &A'\lambda + c=0\\ &-\infty, &O.W. \end{aligned} \right. g(λ)=xinf((c+Aλ)xbλ)={bλ,,Aλ+c=0O.W.
from Slater’s conditon: p ∗ = d ∗ p^*=d^* p=d.

Demo: Quadratic Programming

primal problem:
min ⁡ x ′ P x s . t . A x ≤ b \begin{aligned} &\min & x'Px\\ &s.t.& Ax\leq b \end{aligned} mins.t.xPxAxb
The dual problem is:
g ( λ ) = inf ⁡ x ( x ′ P x + λ ′ ( A x − b ) ) = − 1 4 λ ′ A P − 1 A λ − b ′ λ max ⁡ λ g ( λ ) s . t . λ ≥ 0 \begin{aligned} &g(\lambda)=\inf_x (x'Px+\lambda'(Ax-b))=-\frac{1}{4}\lambda'AP^{-1}A\lambda-b'\lambda\\ &\max_\lambda g(\lambda)\\ &s.t. \lambda\geq 0 \end{aligned} g(λ)=xinf(xPx+λ(Axb))=41λAP1Aλbλλmaxg(λ)s.t.λ0

Reference

B站 许志钦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值