Navigator
Lagrange dual problem
max g ( λ , ν ) s . t . λ ≥ 0 \begin{aligned} &\max &g(\lambda, \nu)\\ &s.t. &\lambda\geq 0 \end{aligned} maxs.t.g(λ,ν)λ≥0
- Find the best lower bound p ∗ p^* p∗
- CVX problem, the optimal value is d ∗ d^* d∗
- λ , ν \lambda, \nu λ,ν are dual feasible of λ ≥ 0 , ( λ , ν ) ∈ d o m g \lambda\geq 0, (\lambda, \nu)\in dom g λ≥0,(λ,ν)∈domg
Weak dual and Strong dual
weak duality:
d
∗
≤
p
∗
d^*\leq p^*
d∗≤p∗.
strong duality:
d
∗
=
p
∗
d^*=p^*
d∗=p∗. usually hold in convex problem
. Add some constrained qualification
, make strong duality
hold.
illustration
min
f
0
(
x
)
s
.
t
.
f
i
(
x
)
≥
0
\begin{aligned} &\min &f_0(x)\\ &s.t. & f_i(x)\geq 0 \end{aligned}
mins.t.f0(x)fi(x)≥0
Define
g
(
λ
)
=
inf
(
u
,
t
)
∈
G
(
t
+
λ
u
)
,
G
=
{
(
f
1
(
x
)
,
f
0
(
x
)
)
∣
∃
x
∈
D
}
g(\lambda)=\inf_{(u, t)\in G}(t+\lambda u), G=\{(f_1(x), f_0(x))| \exist x\in D\}
g(λ)=inf(u,t)∈G(t+λu),G={(f1(x),f0(x))∣∃x∈D}. Expand the direction of u
and t
:
A
=
{
(
u
,
t
)
∣
f
1
(
x
)
≤
u
,
f
0
(
x
)
≤
t
,
for some
x
∈
D
}
A=\{(u, t)| f_1(x)\leq u, f_0(x)\leq t, \text{for some } x\in D\}
A={(u,t)∣f1(x)≤u,f0(x)≤t,for some x∈D}
Proof the assertion: if
f
1
(
x
)
f_1(x)
f1(x) and
f
0
(
x
)
f_0(x)
f0(x) are convex. Let
(
u
1
,
t
1
)
,
(
u
2
,
t
2
)
∈
A
(u_1, t_1), (u_2, t_2)\in A
(u1,t1),(u2,t2)∈A.
θ
u
1
+
(
1
−
θ
)
u
2
∈
A
\theta u_1+(1-\theta)u_2\in A
θu1+(1−θ)u2∈A.
∃
x
1
f
1
(
x
1
)
≤
u
1
∃
x
2
f
1
(
x
2
)
≤
u
2
→
f
(
θ
x
1
+
(
1
−
θ
)
x
2
)
≤
θ
f
(
x
1
)
+
(
1
−
θ
)
f
(
x
2
)
≤
θ
u
1
+
(
1
−
θ
)
u
2
\begin{aligned} &\exist x_1 & f_1(x_1)\leq u_1\\ &\exist x_2 & f_1(x_2)\leq u_2\\ &\rightarrow &f(\theta x_1+(1-\theta)x_2)\leq \theta f(x_1)+(1-\theta)f(x_2)\leq \theta u_1+(1-\theta)u_2 \end{aligned}
∃x1∃x2→f1(x1)≤u1f1(x2)≤u2f(θx1+(1−θ)x2)≤θf(x1)+(1−θ)f(x2)≤θu1+(1−θ)u2
Slater’s constraint condition
String duality
holds for a convex problem:
min
f
0
(
x
)
s
.
t
.
f
i
(
x
)
≤
0
i
=
1
,
2
,
…
,
m
A
x
=
b
\begin{aligned} &\min & f_0(x)\\ &s.t. & f_i(x)\leq 0 & i=1,2,\dots, m\\ &&Ax=b \end{aligned}
mins.t.f0(x)fi(x)≤0Ax=bi=1,2,…,m
If it is strictly feasible i.e.;
∃
x
∈
i
n
t
D
,
f
i
(
x
)
<
0
,
A
x
=
b
\exists x\in int D, f_i(x)<0, Ax=b
∃x∈intD,fi(x)<0,Ax=b. The following conclusions are hold:
- also guarantees that dual optimal d ∗ d^* d∗ is attained of p ∗ > − ∞ p^*>-\infty p∗>−∞.
- ReInt C= { x ∈ A f f C ∣ B ( x , r ) ∩ A f f C ∈ C for some r > 0 } \{x\in Aff C| B(x, r)\cap Aff C \in C \text{for some }r>0\} {x∈AffC∣B(x,r)∩AffC∈Cfor some r>0}.
- linear inequality do not need to hold with strict inequality.
Demo: Inequality form LP
primal problem:
min
c
′
x
s
.
t
.
A
x
≤
b
\begin{aligned} &\min & c'x\\ &s.t.& Ax\leq b \end{aligned}
mins.t.c′xAx≤b
dual function:
g
(
λ
)
=
inf
x
(
(
c
+
A
′
λ
)
x
−
b
′
λ
)
=
{
−
b
′
λ
,
A
′
λ
+
c
=
0
−
∞
,
O
.
W
.
g(\lambda)=\inf_x ((c+A'\lambda)x-b'\lambda)= \left\{ \begin{aligned} &-b'\lambda, &A'\lambda + c=0\\ &-\infty, &O.W. \end{aligned} \right.
g(λ)=xinf((c+A′λ)x−b′λ)={−b′λ,−∞,A′λ+c=0O.W.
from Slater’s conditon:
p
∗
=
d
∗
p^*=d^*
p∗=d∗.
Demo: Quadratic Programming
primal problem:
min
x
′
P
x
s
.
t
.
A
x
≤
b
\begin{aligned} &\min & x'Px\\ &s.t.& Ax\leq b \end{aligned}
mins.t.x′PxAx≤b
The dual problem is:
g
(
λ
)
=
inf
x
(
x
′
P
x
+
λ
′
(
A
x
−
b
)
)
=
−
1
4
λ
′
A
P
−
1
A
λ
−
b
′
λ
max
λ
g
(
λ
)
s
.
t
.
λ
≥
0
\begin{aligned} &g(\lambda)=\inf_x (x'Px+\lambda'(Ax-b))=-\frac{1}{4}\lambda'AP^{-1}A\lambda-b'\lambda\\ &\max_\lambda g(\lambda)\\ &s.t. \lambda\geq 0 \end{aligned}
g(λ)=xinf(x′Px+λ′(Ax−b))=−41λ′AP−1Aλ−b′λλmaxg(λ)s.t.λ≥0
Reference
B站 许志钦