Coze扣子文生图

一:创建工作流

登录 Coze扣子(https://www.coze.cn/) 进入 工作空间 / 资源库 然后新增资源(工作流),输入工作流名称"text2image"(不能是中文)和工作流描述。

在这里插入图片描述
工作流有一个开始节点和结束节点。
在这里插入图片描述

二:绘制工作流

2.1 添加节点:图像生成

在这里插入图片描述

2.2 连接节点

将前后节点连接在一起。
在这里插入图片描述

2.3 配置图像生成节点

  • 模型:人像
  • 比例:1:1
  • 输入:新增,变量值选择开始
  • 正向提示词:通过{{变量名}}来引用变量。
    在这里插入图片描述

2.4 配置结束节点

输出选择图像生成的data。
在这里插入图片描述

三:试运行工作流

用于测试工作流运行是否正常。

在这里插入图片描述

经过多次调整输入input ”一个穿着瑜伽裤的长发美女站在高尔夫汽车旁“,才算生成符合描述的图片,试运行时可能会出现output为空的情况,此时表示生成失败,可以再次尝试。

在这里插入图片描述

四:发布

在这里插入图片描述
在这里插入图片描述

发布成功进入详情可以看到该工作流的ID。workflow_id=7529898597627412506

在这里插入图片描述

五:扣子API

5.1 添加个人访问令牌

在这里插入图片描述
起一个名称,选择过期时间,令牌对应的操作权限,选择指定工作空间。
在这里插入图片描述
生成的令牌一定要先复制下来,关闭了就没有了:pat_b4hgp9Rn6iMYZUSmbTZih6YHdEkvNwZTm5SLja2aUIrdhL4jkIFvVvOKOGMmfZox
在这里插入图片描述

5.2 运行API

输入令牌token值、工作流id和开始节点需要的输入参数input。

在这里插入图片描述
output就是返回的图片地址。

{
	"code": 0,
	"cost": "0",
	"data": "{"output":"https://s.coze.cn/t/WkLTawwU0H4/"}",
	"debug_url": "https://www.coze.cn/work_flow?execute_id=7529910616715886601&space_id=7529344229806686244&workflow_id=7529898597627412506&execute_mode=2",
	"msg": "Success",
	"token": 0
}

粘贴output值在浏览器中打开查看。
在这里插入图片描述

### 文本生成像AI模型的搭建与预览 #### 使用 Stable Diffusion 构建文本到像模型 为了创建能够根据文本提示生成相应像的人工智能系统,一种流行的方法是利用开源深度学习库中的稳定扩散(Stable Diffusion)技术。该方法允许用户通过简单的文本输入来指导神经网络创造独特的艺术作品或实用片[^1]。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-2-base" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a cute corgi dog living in a house made of sushi" image = pipe(prompt).images[0] image.show() ``` 这段 Python 代码展示了如何加载预先训练好的 `stable-diffusion` 模型,并设置调度器以优化采样过程。接着定义了一个字符串变量作为用户的文本提示,在这里是一个关于“住在寿司屋里的可爱柯基”的描述。最后调用了管道对象上的 `.show()` 方法显示由模型产生的像结果。 #### 利用 Amazon SageMaker 提升效率 对于希望加速开发流程的企业和个人开发者来说,云服务平台如 AWS 的 Amazon SageMaker 可以为构建这类复杂的机器学习应用程序提供强有力的支持。它不仅简化了基础设施配置的工作量,还提供了丰富的工具集用于实验跟踪、超参数调整以及自动化部署等功能[^4]。 ```bash aws sagemaker create-training-job --cli-input-json file://training_job.json ``` 上述命令行脚本演示了怎样借助 JSON 文件提交一个培训作业请求至 Amazon SageMaker API 接口,从而启动针对特定任务定制化的模型训练工作流。 #### 大规模模型的应用与发展路径 随着大规模预训练语言模型的发展及其在各个行业的广泛应用,越来越多的研究者和工程师开始探索这些大型模型背后的技术细节和发展趋势。这其中包括但不限于 GPU 资源的有效分配、微调策略的选择等方面的内容[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风流 少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值