2025-07-29:所有安放棋子方案的曼哈顿距离。用go语言,给定三个整数 m、n 和 k,表示一个 m 行 n 列的棋盘,以及需要放置的 k 个相同棋子。 任务是计算出所有可能的合法放置方案中,每

2025-07-29:所有安放棋子方案的曼哈顿距离。用go语言,给定三个整数 m、n 和 k,表示一个 m 行 n 列的棋盘,以及需要放置的 k 个相同棋子。

任务是计算出所有可能的合法放置方案中,每个方案中所有棋子两两之间曼哈顿距离的总和,再把这些结果加起来。

所谓合法方案,指的是将这 k 个棋子都放入棋盘中,且每个格子最多放一颗棋子。

曼哈顿距离定义为两个格子坐标 (x1, y1) 和 (x2, y2) 之间距离为 |x1 - x2| + |y1 - y2|。

最终结果需要对 1000000007 取模后返回。

1 <= m, n <= 100000。

2 <= m * n <= 100000。

2 <= k <= m * n。

输入:m = 2, n = 2, k = 2。

输出:8。

解释:
放置棋子的合法方案包括:

在这里插入图片描述

前 4 个方案中,两个棋子的曼哈顿距离都为 1 。

后 2 个方案中,两个棋子的曼哈顿距离都为 2 。

所以所有方案的总曼哈顿距离之和为 1 + 1 + 1 + 1 + 2 + 2 = 8 。

题目来自力扣3426。


代码和算法思路分步骤

1. 预处理阶乘及其逆元(组合数计算准备)

  • 目标是方便计算组合数 C(n, k) = n! / (k! * (n-k)!)
  • 因为计算组合数时需要快速求阶乘和阶乘逆元。
  • 初始化数组:
    • f[i] 存储 i 的阶乘 i! 取模后的结果。
    • invF[i] 存储 i! 的模逆元,方便快速求组合数。
  • 阶乘预处理利用循环计算从 1! 到 (mx-1)!,mx 是最大值(预设为 100000,满足题目规模)。
  • 阶乘逆元利用费马小定理(快速幂求逆元):
    • 计算 (mx-1)! 的逆元。
    • 利用递推 invF[i-1] = invF[i] * i % mod 计算出所有逆元。
  • 这样,之后在计算组合数时能够 O(1) 取值。

2. 快速幂函数

  • 计算 a^b % mod,模数为 10^9+7
  • 使用“平方乘法”快速幂算法实现,在 O(log b) 时间内计算幂。
  • 主要用于计算阶乘的逆元,费马小定理的逆元求解。

3. 组合数计算函数(comb)

  • 给定参数 n 和 m,计算组合数 C(n, m)。
  • 利用阶乘和逆元数组快速计算:f[n] * invF[m] * invF[n-m] % mod
  • 计算效率是 O(1),非常高效。

4. 计算两两曼哈顿距离总和的核心公式(distanceSum)

  • 代码里的 distanceSum 函数计算所有方案中两两曼哈顿距离的总和。
  • 公式部分:
  return (m * n * (m*(n*n - 1) + n*(m*m - 1))) / 6 % mod * comb(m*n - 2, k - 2) % mod
  • 公式拆解解释:
    • 首先计算全部格子两两曼哈顿距离之和。
    • m * n 是格子总数。
    • (m*(n*n - 1) + n*(m*m - 1)) / 6 是棋盘中两格之间曼哈顿距离的总和经数学推导得出的公式。
    • 乘以组合数 C(m*n - 2, k - 2) 表示从剩余格子中选出其他的棋子位置,保证总共 k 个棋子,且这两格都是被选中的情况数。
    • 结果为所有棋子两两之间曼哈顿距离和的总和。
  • 利用了组合数和数学上的组合推导,避免暴力枚举,非常高效。

5. 主函数演示(main)

  • 给定简单测试用例 m=2, n=2, k=2。
  • 调用 distanceSum 计算距离总和。
  • 输出结果正确(题目示例中结果为8)。

总体思路总结

  1. 预处理阶乘和逆元,方便快速计算组合数。
  2. 使用数学推导的曼哈顿距离总和公式,不用枚举所有组合。
  3. 使用组合数考虑多个棋子的不同选择方案数量。
  4. 对结果取模保证数字不溢出。
  5. 通过前面步骤获得最终所有合法方案曼哈顿距离和。

时间复杂度分析

  • 阶乘和逆元预处理复杂度:O(mx),mx=100000(固定最大值)
  • 快速幂求逆元复杂度:O(log mod),单次,几乎可忽略
  • 计算组合数是 O(1)
  • 计算曼哈顿距离总和公式是 O(1)
  • 总体运行时只受限于预处理阶乘数组的线性时间

综合时间复杂度: O(mx) ≈ O(100000),即线性复杂度


空间复杂度分析

  • 需要存储两个长度为 mx 的数组:finvF
  • 每个数组大小为 mx(100,000 整数)
  • 其他额外变量常数空间

综合空间复杂度: O(mx) = O(100000)


小结

  • 利用预处理和数学组合推导,问题从暴力枚举(组合高达 C(m*n, k))降到线性预处理加 O(1) 的计算。
  • 时间复杂度线性且绝大部分为预处理,在线查询速度快。
  • 空间复杂度主要用于存储阶乘和逆元数组。
  • 该方案适用于 m*n 最大值约为 100,000 的情况,满足题目限制。

Go完整代码如下:

package main

import (
	"fmt"
)

const mod = 1_000_000_007
const mx = 100_000

var f [mx]int    // f[i] = i!
var invF [mx]int // invF[i] = i!^-1

func init() {
	f[0] = 1
	for i := 1; i < mx; i++ {
		f[i] = f[i-1] * i % mod
	}

	invF[mx-1] = pow(f[mx-1], mod-2)
	for i := mx - 1; i > 0; i-- {
		invF[i-1] = invF[i] * i % mod
	}
}

func pow(x, n int) int {
	res := 1
	for ; n > 0; n /= 2 {
		if n%2 > 0 {
			res = res * x % mod
		}
		x = x * x % mod
	}
	return res
}

func comb(n, m int) int {
	return f[n] * invF[m] % mod * invF[n-m] % mod
}

func distanceSum(m, n, k int) int {
	return (m * n * (m*(n*n-1) + n*(m*m-1))) / 6 % mod * comb(m*n-2, k-2) % mod
}

func main() {
	m := 2
	n := 2
	k := 2
	result := distanceSum(m, n, k)
	fmt.Println(result)
}

在这里插入图片描述

Python完整代码如下:

# -*-coding:utf-8-*-

MOD = 10**9 + 7
MX = 100_000

# 预处理阶乘和逆阶乘
f = [1] * MX
invF = [1] * MX

def pow_mod(x, n):
    res = 1
    while n > 0:
        if n & 1:
            res = res * x % MOD
        x = x * x % MOD
        n >>= 1
    return res

def init():
    for i in range(1, MX):
        f[i] = f[i-1] * i % MOD
    invF[MX-1] = pow_mod(f[MX-1], MOD-2)
    for i in range(MX-2, -1, -1):
        invF[i] = invF[i+1] * (i+1) % MOD

def comb(n, m):
    if m > n or m < 0:
        return 0
    return f[n] * invF[m] % MOD * invF[n-m] % MOD

def distance_sum(m, n, k):
    total_cells = m * n
    # 利用整除可能导致问题,先用乘法顺序计算,再对MOD取模避免整除误差
    part1 = (m * (n * n - 1)) % MOD
    part2 = (n * (m * m - 1)) % MOD
    val = (total_cells * (part1 + part2)) % MOD
    # 除以6相当于乘以6的逆元
    inv6 = pow_mod(6, MOD - 2)
    val = val * inv6 % MOD
    val = val * comb(total_cells - 2, k - 2) % MOD
    return val

if __name__ == "__main__":
    init()
    m = 2
    n = 2
    k = 2
    print(distance_sum(m, n, k))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

福大大架构师每日一题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值