2025-07-29:所有安放棋子方案的曼哈顿距离。用go语言,给定三个整数 m、n 和 k,表示一个 m 行 n 列的棋盘,以及需要放置的 k 个相同棋子。
任务是计算出所有可能的合法放置方案中,每个方案中所有棋子两两之间曼哈顿距离的总和,再把这些结果加起来。
所谓合法方案,指的是将这 k 个棋子都放入棋盘中,且每个格子最多放一颗棋子。
曼哈顿距离定义为两个格子坐标 (x1, y1) 和 (x2, y2) 之间距离为 |x1 - x2| + |y1 - y2|。
最终结果需要对 1000000007 取模后返回。
1 <= m, n <= 100000。
2 <= m * n <= 100000。
2 <= k <= m * n。
输入:m = 2, n = 2, k = 2。
输出:8。
解释:
放置棋子的合法方案包括:
前 4 个方案中,两个棋子的曼哈顿距离都为 1 。
后 2 个方案中,两个棋子的曼哈顿距离都为 2 。
所以所有方案的总曼哈顿距离之和为 1 + 1 + 1 + 1 + 2 + 2 = 8 。
题目来自力扣3426。
代码和算法思路分步骤
1. 预处理阶乘及其逆元(组合数计算准备)
- 目标是方便计算组合数 C(n, k) = n! / (k! * (n-k)!)
- 因为计算组合数时需要快速求阶乘和阶乘逆元。
- 初始化数组:
f[i]
存储 i 的阶乘 i! 取模后的结果。invF[i]
存储 i! 的模逆元,方便快速求组合数。
- 阶乘预处理利用循环计算从 1! 到 (mx-1)!,
mx
是最大值(预设为 100000,满足题目规模)。 - 阶乘逆元利用费马小定理(快速幂求逆元):
- 计算
(mx-1)!
的逆元。 - 利用递推
invF[i-1] = invF[i] * i % mod
计算出所有逆元。
- 计算
- 这样,之后在计算组合数时能够 O(1) 取值。
2. 快速幂函数
- 计算
a^b % mod
,模数为10^9+7
。 - 使用“平方乘法”快速幂算法实现,在 O(log b) 时间内计算幂。
- 主要用于计算阶乘的逆元,费马小定理的逆元求解。
3. 组合数计算函数(comb)
- 给定参数 n 和 m,计算组合数 C(n, m)。
- 利用阶乘和逆元数组快速计算:
f[n] * invF[m] * invF[n-m] % mod
- 计算效率是 O(1),非常高效。
4. 计算两两曼哈顿距离总和的核心公式(distanceSum)
- 代码里的
distanceSum
函数计算所有方案中两两曼哈顿距离的总和。 - 公式部分:
return (m * n * (m*(n*n - 1) + n*(m*m - 1))) / 6 % mod * comb(m*n - 2, k - 2) % mod
- 公式拆解解释:
- 首先计算全部格子两两曼哈顿距离之和。
m * n
是格子总数。(m*(n*n - 1) + n*(m*m - 1)) / 6
是棋盘中两格之间曼哈顿距离的总和经数学推导得出的公式。- 乘以组合数
C(m*n - 2, k - 2)
表示从剩余格子中选出其他的棋子位置,保证总共 k 个棋子,且这两格都是被选中的情况数。 - 结果为所有棋子两两之间曼哈顿距离和的总和。
- 利用了组合数和数学上的组合推导,避免暴力枚举,非常高效。
5. 主函数演示(main)
- 给定简单测试用例 m=2, n=2, k=2。
- 调用 distanceSum 计算距离总和。
- 输出结果正确(题目示例中结果为8)。
总体思路总结
- 预处理阶乘和逆元,方便快速计算组合数。
- 使用数学推导的曼哈顿距离总和公式,不用枚举所有组合。
- 使用组合数考虑多个棋子的不同选择方案数量。
- 对结果取模保证数字不溢出。
- 通过前面步骤获得最终所有合法方案曼哈顿距离和。
时间复杂度分析
- 阶乘和逆元预处理复杂度:O(mx),mx=100000(固定最大值)
- 快速幂求逆元复杂度:O(log mod),单次,几乎可忽略
- 计算组合数是 O(1)
- 计算曼哈顿距离总和公式是 O(1)
- 总体运行时只受限于预处理阶乘数组的线性时间
综合时间复杂度: O(mx) ≈ O(100000),即线性复杂度
空间复杂度分析
- 需要存储两个长度为 mx 的数组:
f
和invF
- 每个数组大小为 mx(100,000 整数)
- 其他额外变量常数空间
综合空间复杂度: O(mx) = O(100000)
小结
- 利用预处理和数学组合推导,问题从暴力枚举(组合高达 C(m*n, k))降到线性预处理加 O(1) 的计算。
- 时间复杂度线性且绝大部分为预处理,在线查询速度快。
- 空间复杂度主要用于存储阶乘和逆元数组。
- 该方案适用于 m*n 最大值约为 100,000 的情况,满足题目限制。
Go完整代码如下:
package main
import (
"fmt"
)
const mod = 1_000_000_007
const mx = 100_000
var f [mx]int // f[i] = i!
var invF [mx]int // invF[i] = i!^-1
func init() {
f[0] = 1
for i := 1; i < mx; i++ {
f[i] = f[i-1] * i % mod
}
invF[mx-1] = pow(f[mx-1], mod-2)
for i := mx - 1; i > 0; i-- {
invF[i-1] = invF[i] * i % mod
}
}
func pow(x, n int) int {
res := 1
for ; n > 0; n /= 2 {
if n%2 > 0 {
res = res * x % mod
}
x = x * x % mod
}
return res
}
func comb(n, m int) int {
return f[n] * invF[m] % mod * invF[n-m] % mod
}
func distanceSum(m, n, k int) int {
return (m * n * (m*(n*n-1) + n*(m*m-1))) / 6 % mod * comb(m*n-2, k-2) % mod
}
func main() {
m := 2
n := 2
k := 2
result := distanceSum(m, n, k)
fmt.Println(result)
}
Python完整代码如下:
# -*-coding:utf-8-*-
MOD = 10**9 + 7
MX = 100_000
# 预处理阶乘和逆阶乘
f = [1] * MX
invF = [1] * MX
def pow_mod(x, n):
res = 1
while n > 0:
if n & 1:
res = res * x % MOD
x = x * x % MOD
n >>= 1
return res
def init():
for i in range(1, MX):
f[i] = f[i-1] * i % MOD
invF[MX-1] = pow_mod(f[MX-1], MOD-2)
for i in range(MX-2, -1, -1):
invF[i] = invF[i+1] * (i+1) % MOD
def comb(n, m):
if m > n or m < 0:
return 0
return f[n] * invF[m] % MOD * invF[n-m] % MOD
def distance_sum(m, n, k):
total_cells = m * n
# 利用整除可能导致问题,先用乘法顺序计算,再对MOD取模避免整除误差
part1 = (m * (n * n - 1)) % MOD
part2 = (n * (m * m - 1)) % MOD
val = (total_cells * (part1 + part2)) % MOD
# 除以6相当于乘以6的逆元
inv6 = pow_mod(6, MOD - 2)
val = val * inv6 % MOD
val = val * comb(total_cells - 2, k - 2) % MOD
return val
if __name__ == "__main__":
init()
m = 2
n = 2
k = 2
print(distance_sum(m, n, k))