基于BERT模型的文本分类研究 TensorFlow2实现(内附源码)【自然语言处理NLP-100例】

本文介绍了如何使用BERT模型进行文本分类,基于THUCTC数据集,涵盖了数据整理、模型构建、训练及评估全过程。最终实现10类文本的高效分类,模型准确率达到一定水平。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


大家好,我是K同学啊!

在上一篇文章中讲解了BERT是什么,这一篇文章中我应用BERT进行一个文本分类的实战,使用的是THUCTC数据集,实现了财经房产股票教育科技社会时政体育游戏娱乐等10类文本的高效分类,最后的分类准确率达到了83.3%,项目情况如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值