YOLOv5解析 | 第一篇:快速部署YOLOv5模型

8 篇文章 ¥29.90 ¥99.00
本文介绍了如何快速部署YOLOv5目标检测模型,包括下载源码、配置环境、运行代码及进行视频检测。通过PyTorch实现YOLOv5s的实例操作,帮助读者轻松入门目标检测。

大家好,我是『K同学啊』!

拖了好久,终于要开始目标检测系列了。自己想过好几次,想尽快出几期目标检测算法的博客教程,但是一直苦于不知道如何写,才能让大家轻松快速高效的入门目标检测算法。这段时间终于有个一个比较靠谱的思路。我是这样计划的:
首先,带大家先将算法跑起来,不然都不知道在干嘛,纯理论的东西看着头都大了,然后,教大家将官方的数据集更换成我们自己的数据集,并完成模型的训练。其次,在我们代码可以运行的情况下,从整体上讲解算法的结构。最后,挑选代码中一些比较关键的点,进行详细讲解

一、前言

YOLO系列是目前最热门的目标检测算法,那就拿它“开刀”了。YOLO目前已经更新到了YOLOv5,由于YOLOv5太新了,目前TensorFlow2版本还未出来(网上存在一些tf版本的,但是大概率不靠谱,就不踩坑了),那就用PyTorch吧,反正PyTorch迟早也是要学的嘛。PyTorch与TensorFlow的区别如下:

  • TensorFlow:更倾向于工程人员,落地比较好。
  • PyTorch:比较倾向于研究人员,前沿算法用得比较多。

某宝上找人帮忙给小项目换一个框架(TensorFlow互转PyTorch),收费一般是1K起步,所以啊,技多不压身。<

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值