著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定 $N = 5$, 排列是1、3、2、4、5。则:
- 1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
- 尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
- 尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
- 类似原因,4 和 5 都可能是主元。
因此,有 3 个元素可能是主元。
输入格式:
输入在第 1 行中给出一个正整数 N(≤105); 第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 109。
输出格式:
在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
#include <iostream>
#include <cstring>
#include <stdio.h>
#include <algorithm>
using namespace std;
int a[100005];
int b[100005];
int ans[100005];
int main()
{
int n;
int maxLeft = -1, minRight = 1000000000;
int m = 0;
memset(b, 0, sizeof(b));
a[0] = -1;
scanf("%d", &n);
for (int i = 1; i <= n; i++)
cin >> a[i];
a[n+1] = minRight;
for (int i = 1; i <= n; i++){
maxLeft = max(maxLeft, a[i-1]);
if (maxLeft < a[i])
b[i]++;
}
for (int i = n; i > 0; i--){
minRight = min(minRight, a[i+1]);
if (minRight > a[i])
b[i]++;
if (b[i] == 2)
ans[m++] = a[i];
}
printf("%d\n", m);
if (m > 0){
sort(ans, ans+m);
printf("%d", ans[0]);
for (int i = 1; i < m; i++)
printf(" %d", ans[i]);
} else
printf("\n");
return 0;
}