题目描述:
哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。
现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事。于是他来问你:带什么动物去可以让最难变的那种动物(即该动物变为哈利·波特自己带去的动物所需要的魔咒最长)需要的魔咒最短?例如:如果只有猫、鼠、鱼,则显然哈利·波特应该带鼠去,因为鼠变成另外两种动物都只需要念4个字符;而如果带猫去,则至少需要念6个字符才能把猫变成鱼;同理,带鱼去也不是最好的选择。
输入格式:
输入说明:输入第1行给出两个正整数N (≤100)和M,其中N是考试涉及的动物总数,M是用于直接变形的魔咒条数。为简单起见,我们将动物按1~N编号。随后M行,每行给出了3个正整数,分别是两种动物的编号、以及它们之间变形需要的魔咒的长度(≤100),数字之间用空格分隔。
输出格式:
输出哈利·波特应该带去考场的动物的编号、以及最长的变形魔咒的长度,中间以空格分隔。如果只带1只动物是不可能完成所有变形要求的,则输出0。如果有若干只动物都可以备选,则输出编号最小的那只。
输入样例:
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
输出样例:
4 70
【注】:做这个题发现了自己的一个遗忘点【带权图的邻接矩阵对角线为0】
测试点
测试点 | 提示 | 结果 | 耗时 | 内存 |
---|---|---|---|---|
0 | sample换数字,只有唯一解 |
答案正确
| 5 ms | 384 KB |
1 | 无解 |
答案正确
| 5 ms | 384 KB |
2 | 最大N的等边长环,解不唯一,输出最小编号 |
答案正确
| 7 ms | 384 KB |
3 | 最大N,最大M,随机完全图 |
答案正确
| 13 ms | 424 KB |
#include <iostream>
#define inf 0x3f3f3f3f
using namespace std;
int g[102][102];
void floyd(int n){ // 求最短路径
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
g[i][j] = min(g[i][j], g[i][k]+g[k][j]);
}
int getDistance(int n, int x){ // 求每个节点的最长魔咒长度
int dis = -1;
for (int i = 1; i <= n; i++)
if (i!=x && g[x][i]==inf)
return inf;
else
dis = max(dis, g[x][i]);
return dis;
}
int main() {
int n, m;
int x, y, cost;
cin >> n >> m;
for (int i = 1; i <= n; i++){ // 初始化
g[i][i] = 0; // 对角线要为 0
for (int j = 1; j < i; j++)
g[i][j] = g[j][i] = inf;
}
for (int i = 0; i < m; i++){ // 构图
cin >> x >> y >> cost;
g[x][y] = g[y][x] = cost;
}
floyd(n);
int minDistance = inf, minIndex = 1;
int dis;
for (int i = 1; i <= n; i++){
dis = getDistance(n, i);
if (dis < minDistance){
minDistance = dis;
minIndex = i;
}
}
if (minDistance == inf)
cout << 0;
else
cout << minIndex << " " << minDistance;
return 0;
}