【论文笔记】A Multi-player Game for Studying Federated Learning Incentive Schemes

论文水平:A会——Proceedings of the T wenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) Demonstrations Track

文章提出了一个多人博弈模型FedGame来研究FL参与者在不同激励方案下如何做除行动选择决策。决策过程可以分析和可视化,为未来的激励机制设计提供参考。

FedGame支持以下激励方案:

  • 1)线性:参与者在总回报中的份额与其贡献数据的有用性成正比;
  • 2)平等:FL利润在参与者之间平均分配;
  • 3)个人:参与者在总收益中的份额与其对联盟利润的边际贡献成比例;
  • 4)Union:参与者i在总收益中的份额遵循union博弈收益方案,如果i被解雇,则与FL模型的边际效应成比例;
  • 5)Shapely:联邦收入根据参与者的shapely值在参与者之间分配。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牧心.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值