HDU1869(Flody算法)

本文介绍了一种使用Floyd算法解决图中所有顶点对之间的最短路径问题的方法,并通过一个具体的C++实现示例展示了如何利用该算法进行计算。特别地,文章探讨了如何根据路径长度判断特定条件是否成立。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxx=1005;
int e[maxx][maxx];
int vis[maxx];
int n,m;
void Flody(){
	for(int k=0;k<n;k++){
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){
				e[i][j]=min(e[i][k]+e[k][j],e[i][j]);
			}
		}
	}
	int flag=0;
	for(int i=0;i<n;i++){
		for(int j=0;j<i;j++){
			if(e[i][j]>7){
				flag=1;
				break;
			}
		}
		if(flag==1)break;
	}
	if(flag==0){
		cout<<"Yes"<<endl;
	}else{
		cout<<"No"<<endl;
	}
}
int main(){
	while(scanf("%d %d",&n,&m)!=EOF){
		for(int i=0;i<=n;i++){
			for(int j=0;j<=n;j++){
				if(i==j){
					e[i][j]=0;
				}else{
					e[i][j]=inf;
				}
			}
		}
		for(int i=0;i<m;i++){
			int a,b;
			scanf("%d %d",&a,&b);
			e[a][b]=e[b][a]=1;
		}
		Flody();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值