在OpenCV里实现灰度直方图1

本文介绍了灰度直方图的概念,作为评价图像清晰度的标准之一,阐述了灰度分布对图像对比度的影响。通过Python和OpenCV展示了如何统计并显示灰度图像的直方图,帮助理解直方图在图像处理中的应用。

有时候,我们看到一张照片它不清楚,那么这个不清楚用什么来表示,或者说评价呢?其实我们在使用数码相机时有很多参数,其中有一项有关曝光的图表最容易被人忽略,也最难理解,它就是相机内自带的曝光助手—直方图。现在就来理解直方图的世界,了解直方图的奥秘。

灰度直方图是关于灰度级分布的函数,是对图像中灰度级分布的统计。灰度直方图是将数字图像中的所有像素,按照灰度值的大小,统计其出现的频率。灰度直方图是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图像中某种灰度出现的频率。

比如一幅图有5个像素组成[1, 20, 20, 50, 10],在这幅图中,进行直方图统计就是把每个像素出现的次数单独加起来,在这里就是1出现1次,20出现2次,50出现1次,10出现1次,如果以像素值为横轴,以出现次数为纵轴,把这个图画出来,就是灰度直方图了。那么灰度直方图作用是什么呢?在现实的拍摄过程中,比如说视频监控领域,由于其图像的灰度分布集中在较窄的范围内,这就导致了图像的细节不够清晰。为什么不清晰呢,因为灰度分布较窄时,那么,在计算对比度的时候,对比度就很小,所以就不清晰。为了使得图像变得清晰,那么就需要使得灰度值的差别变大,为了使得灰度值的差别变大,就意味着灰度分布就变的较宽,使得灰度值分布变得均匀,在某个灰度级区间内,像素的个数分布大致相同,这样才能使得图像的对比度增强,细节变得清晰可见。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

caimouse

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值