【深度学习】Python实现随机梯度下降(SGD)

目录

什么是随机梯度下级        

随机梯度下降的必要性

 随机梯度下降的工作原理

随机梯度下降Python实现

生成数据

定义随机梯度下降函数

使用随机梯度下降法训练模型

 可视化成本函数

 绘制数据和回归线

 打印最终模型参数

随机梯度下降的优势

随机梯度下降的挑战

随机梯度下降的变体

随机梯度下降的应用


什么是随机梯度下级        

        随机梯度下降(SGD)是机器学习中的一种优化算法,特别是在处理大型数据集时。它是传统梯度下降算法的一种变体,但在效率和可扩展性方面具有多个优势,使其成为许多深度学习任务的首选方法。

       要理解随机梯度下降,首先必须理解梯度下降的概念。梯度下降是一种迭代优化算法,用于最小化损失函数,该函数表示模型的预测值与实际值的偏差程度。其主要目标是调整模型的参数(权重、偏差等),以使误差最小化。

        传统梯度下降算法的更新规则为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值