目录
什么是随机梯度下级
随机梯度下降(SGD)是机器学习中的一种优化算法,特别是在处理大型数据集时。它是传统梯度下降算法的一种变体,但在效率和可扩展性方面具有多个优势,使其成为许多深度学习任务的首选方法。
要理解随机梯度下降,首先必须理解梯度下降的概念。梯度下降是一种迭代优化算法,用于最小化损失函数,该函数表示模型的预测值与实际值的偏差程度。其主要目标是调整模型的参数(权重、偏差等),以使误差最小化。
传统梯度下降算法的更新规则为:
目录
随机梯度下降(SGD)是机器学习中的一种优化算法,特别是在处理大型数据集时。它是传统梯度下降算法的一种变体,但在效率和可扩展性方面具有多个优势,使其成为许多深度学习任务的首选方法。
要理解随机梯度下降,首先必须理解梯度下降的概念。梯度下降是一种迭代优化算法,用于最小化损失函数,该函数表示模型的预测值与实际值的偏差程度。其主要目标是调整模型的参数(权重、偏差等),以使误差最小化。
传统梯度下降算法的更新规则为: