【深度学习】一步一步实现随机森林回归(Python实现)

目录

随机森林回归的工作原理        

在Python中实现随机森林回归 

1. 导入库   

 2. 导入数据集

3. 数据准备

4. 随机森林回归器模型

5. 进行预测和评估

6. 可视化

7. 可视化随机森林模型中的单个决策树

随机森林回归的应用

随机森林回归的优点

随机森林回归的缺点

        随机森林是一种集成学习方法,它结合多个决策树的预测结果,以产生更准确、更稳定的预测。它是一种监督学习算法,可用于分类和回归任务。

        在回归任务中,我们可以使用随机森林回归技术来预测数值。它通过对多个决策树的结果求平均来预测连续值。

随机森林回归的工作原理
        

        随机森林回归的工作原理是构建多棵决策树,每棵树都在数据的随机子集上训练。该方法首先采用自助采样技术,即有放回地随机选取数据行,为每棵树生成独特的训练集。随后进行特征采样,仅使用部分随机特征来构建每棵树,从

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值