目录
循环神经网络(RNN)专门用于处理语音、文本和时间序列等序列数据。与传统前馈神经网络处理固定长度输入不同,RNN通过维护隐藏状态来处理可变长度序列,该状态保留了先前步骤的信息。这种记忆特性使RNN能够有效捕捉序列特征。但传统RNN存在梯度消失等问题,导致训练困难。为此,研究者开发了双向循环神经网络(BRNN)等改进架构。本文将重点讨论BRNN的工作原理。
双向循环神经网络(BRNN)概述
双向循环神经网络(BRNN)是对传统循环神经网络的改进,它能同时从正向和反向处理序列数据。这种双向处理机制让网络在预测时既能参考历史信息,又能利用未来上下文,从而获得更全面的序列理解。
BRNN包含两个独立的隐藏层:正向层按时间顺序处理序列,与常规RNN类似;反向层则逆