高等数学(第七版)同济大学 习题5-4
1. 判定下列各反常积分的收敛性,如果收敛,计算反常积分的值:\begin{aligned}&1. \ 判定下列各反常积分的收敛性,如果收敛,计算反常积分的值:&\end{aligned}1. 判定下列各反常积分的收敛性,如果收敛,计算反常积分的值:
(1) ∫1+∞dxx4; (2) ∫1+∞dxx; (3) ∫0+∞e−axdx (a>0); (4) ∫0+∞dx(1+x)(1+x2); (5) ∫0+∞e−ptsin ωtdt (p>0,ω>0); (6) ∫−∞+∞dxx2+2x+2; (7) ∫01xdx1−x2; (8) ∫02dx(1−x)2; (9) ∫12xdxx−1; (10) ∫1edxx1−(ln x)2\begin{aligned} &\ \ (1)\ \ \int_{1}^{+\infty}\frac{dx}{x^4};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \int_{1}^{+\infty}\frac{dx}{\sqrt{x}};\\\\ &\ \ (3)\ \ \int_{0}^{+\infty}e^{-ax}dx\ (a \gt 0);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \int_{0}^{+\infty}\frac{dx}{(1+x)(1+x^2)};\\\\ &\ \ (5)\ \ \int_{0}^{+\infty}e^{-pt}sin\ \omega tdt\ (p \gt 0,\omega \gt 0);\ \ \ \ (6)\ \ \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2};\\\\ &\ \ (7)\ \ \int_{0}^{1}\frac{xdx}{\sqrt{1-x^2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \int_{0}^{2}\frac{dx}{(1-x)^2};\\\\ &\ \ (9)\ \ \int_{1}^{2}\frac{xdx}{\sqrt{x-1}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10)\ \ \int_{1}^{e}\frac{dx}{x\sqrt{1-(ln\ x)^2}} & \end{aligned} (1) ∫1+∞x4dx; (2) ∫1+∞xdx; (3) ∫0+∞e−axdx (a>0); (4) ∫0+∞(1+x)(1+x2)dx; (5) ∫0+∞e−ptsin ωtdt (p>0,ω>0); (6) ∫−∞+∞x2+2x+2dx; (7) ∫011−x2xdx; (8) ∫02(1−x)2dx; (9) ∫12x−1xdx; (10) ∫1ex1−(ln x)2dx
解:
(1) ∫1+∞dxx4=[−13x3]1+∞=13 (2) ∫1tdxx=[2x]1t=2t−2,当t→+∞时,极限不存在,所以,反常积分是发散的。 (3) ∫0+∞e−axdx=−1a∫0+∞e−axd(−ax)=[−1ae−ax]0+∞=1a (4) ∫0+∞dx(1+x)(1+x2)=12∫0+∞(11+x+1−x1+x2)dx=[14ln(1+x)21+x2+12arctan x]0+∞=π4 (5) ∫e−ptsin ωtdt=−1p∫sin ωtd(e−pt)=−1pe−ptsin ωt+ωp∫e−ptcos ωtdt= −1pe−ptsin ωt−ωp2∫cos ωtd(e−pt)=−1pe−ptsin ωt−ωp2e−ptcos ωt−ω2p2∫e−ptsin ωtdt,得, ∫e−ptsin ωtdt=−pe−ptsin ωt−ωe−ptcos ωtp2+ω2+C, 所以,∫0+∞e−ptsin ωtdt=[−pe−ptsin ωt−ωe−ptcos ωtp2+ω2]0+∞=ωp2+ω2 (6) ∫−∞+∞dxx2+2x+2=∫−∞01(x+1)2+1d(x+1)+∫0+∞1(x+1)2+1d(x+1)= [arctan(x+1)]−∞0+[arctan(x+1)]0+∞=π (7) ∫01xdx1−x2=[−1−x2]01=1 (8) ∫0tdx(1−x)2=[11−x]0t=11−t−1,当t→1时极限不存在,所以,反常积分发散。 (9) 令u=x−1,则x=u2+1,dx=2udu,得∫12xdxx−1=2∫01(u2+1)du=83 (10) ∫1edxx1−(ln x)2=∫1ed(ln x)1−(ln x)2=[arcsin ln x]1e=π2\begin{aligned} &\ \ (1)\ \int_{1}^{+\infty}\frac{dx}{x^4}=\left[-\frac{1}{3x^3}\right]_{1}^{+\infty}=\frac{1}{3}\\\\ &\ \ (2)\ \int_{1}^{t}\frac{dx}{\sqrt{x}}=[2\sqrt{x}]_{1}^{t}=2\sqrt{t}-2,当t \rightarrow +\infty时,极限不存在,所以,反常积分是发散的。\\\\ &\ \ (3)\ \int_{0}^{+\infty}e^{-ax}dx=-\frac{1}{a}\int_{0}^{+\infty}e^{-ax}d(-ax)=\left[-\frac{1}{a}e^{-ax}\right]_{0}^{+\infty}=\frac{1}{a}\\\\ &\ \ (4)\ \int_{0}^{+\infty}\frac{dx}{(1+x)(1+x^2)}=\frac{1}{2}\int_{0}^{+\infty}\left(\frac{1}{1+x}+\frac{1-x}{1+x^2}\right)dx=\left[\frac{1}{4}ln\frac{(1+x)^2}{1+x^2}+\frac{1}{2}arctan\ x\right]_{0}^{+\infty}=\frac{\pi}{4}\\\\ &\ \ (5)\ \int e^{-pt}sin\ \omega tdt=-\frac{1}{p}\int sin\ \omega td(e^{-pt})=-\frac{1}{p}e^{-pt}sin\ \omega t+\frac{\omega}{p}\int e^{-pt}cos\ \omega tdt=\\\\ &\ \ \ \ \ \ \ -\frac{1}{p}e^{-pt}sin\ \omega t-\frac{\omega}{p^2}\int cos\ \omega td(e^{-pt})=-\frac{1}{p}e^{-pt}sin\ \omega t-\frac{\omega}{p^2}e^{-pt}cos\ \omega t-\frac{\omega^2}{p^2}\int e^{-pt}sin\ \omega tdt,得,\\\\ &\ \ \ \ \ \ \ \int e^{-pt}sin\ \omega tdt=\frac{-pe^{-pt}sin\ \omega t-\omega e^{-pt}cos\ \omega t}{p^2+\omega^2}+C,\\\\ &\ \ \ \ \ \ \ 所以,\int_{0}^{+\infty}e^{-pt}sin\ \omega tdt=\left[\frac{-pe^{-pt}sin\ \omega t-\omega e^{-pt}cos\ \omega t}{p^2+\omega^2}\right]_{0}^{+\infty}=\frac{\omega}{p^2+\omega^2}\\\\ &\ \ (6)\ \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2}=\int_{-\infty}^{0}\frac{1}{(x+1)^2+1}d(x+1)+\int_{0}^{+\infty}\frac{1}{(x+1)^2+1}d(x+1)=\\\\ &\ \ \ \ \ \ \ \ [arctan(x+1)]_{-\infty}^{0}+[arctan(x+1)]_{0}^{+\infty}=\pi\\\\ &\ \ (7)\ \int_{0}^{1}\frac{xdx}{\sqrt{1-x^2}}=[-\sqrt{1-x^2}]_{0}^{1}=1\\\\ &\ \ (8)\ \int_{0}^{t}\frac{dx}{(1-x)^2}=\left[\frac{1}{1-x}\right]_{0}^{t}=\frac{1}{1-t}-1,当t \rightarrow 1时极限不存在,所以,反常积分发散。\\\\ &\ \ (9)\ 令u=\sqrt{x-1},则x=u^2+1,dx=2udu,得\int_{1}^{2}\frac{xdx}{\sqrt{x-1}}=2\int_{0}^{1}(u^2+1)du=\frac{8}{3}\\\\ &\ \ (10)\ \int_{1}^{e}\frac{dx}{x\sqrt{1-(ln\ x)^2}}=\int_{1}^{e}\frac{d(ln\ x)}{\sqrt{1-(ln\ x)^2}}=[arcsin\ ln\ x]_{1}^{e}=\frac{\pi}{2} & \end{aligned} (1) ∫1+∞x4dx=[−3x31]1+∞=31 (2) ∫1txdx=[2x]1t=2t−2,当t→+∞时,极限不存在,所以,反常积分是发散的。 (3) ∫0+∞e−axdx=−a1∫0+∞e−axd(−ax)=[−a1e−ax]0+∞=a1 (4) ∫0+∞(1+x)(1+x2)dx=21∫0+∞(1+x1+1+x21−x)dx=[41ln1+x2(1+x)2+21arctan x]0+∞=4π (5) ∫e−ptsin ωtdt=−p1∫sin ωtd(e−pt)=−p1e−ptsin ωt+pω∫e−ptcos ωtdt= −p1e−ptsin ωt−p2ω∫cos ωtd(e−pt)=−p1e−ptsin ωt−p2ωe−ptcos ωt−p2ω2∫e−ptsin ωtdt,得, ∫e−ptsin ωtdt=p2+ω2−pe−ptsin ωt−ωe−ptcos ωt+C, 所以,∫0+∞e−ptsin ωtdt=[p2+ω2−pe−ptsin ωt−ωe−ptcos ωt]0+∞=p2+ω2ω (6) ∫−∞+∞x2+2x+2dx=∫−∞0(x+1)2+11d(x+1)+∫0+∞(x+1)2+11d(x+1)= [arctan(x+1)]−∞0+[arctan(x+1)]0+∞=π (7) ∫011−x2xdx=[−1−x2]01=1 (8) ∫0t(1−x)2dx=[1−x1]0t=1−t1−1,当t→1时极限不存在,所以,反常积分发散。 (9) 令u=x−1,则x=u2+1,dx=2udu,得∫12x−1xdx=2∫01(u2+1)du=38 (10) ∫1ex1−(ln x)2dx=∫1e1−(ln x)2d(ln x)=[arcsin ln x]1e=2π
2. 当k为何值时,反常积分∫2+∞dxx(ln x)k收敛?当k为何值时,这反常积分发散?又当k为何值时, 这反常积分取得最小值?\begin{aligned}&2. \ 当k为何值时,反常积分\int_{2}^{+\infty}\frac{dx}{x(ln\ x)^k}收敛?当k为何值时,这反常积分发散?又当k为何值时,\\\\&\ \ \ \ 这反常积分取得最小值?&\end{aligned}2. 当k为何值时,反常积分∫2+∞x(ln x)kdx收敛?当k为何值时,这反常积分发散?又当k为何值时, 这反常积分取得最小值?
解:
∫dxx(ln x)k=∫1(ln x)kd(ln x)={ln ln x+C, k=1,−1(k−1)lnk−1x+C,k≠1,, 当k≤1时,反常积分发散;当k>1时,反常积分收敛. ∫2+∞dxx(ln x)k=[−1(k−1)lnk−1x]2+∞=1(k−1)(ln 2)k−1,记f(k)=1(k−1)(ln 2)k−1, f′(k)=−1(k−1)2(ln 2)2k−2[(ln 2)k−1+(k−1)(ln 2)k−1ln ln 2]=−1+(k−1)ln ln 2(k−1)2(ln 2)k−1 令f′(k)=0,得k=1−1ln ln 2,当1<k<1−1ln ln 2时,f′(k)<0,当k>1−1ln ln 2时,f′(k)>0, 所以k=1−1ln ln 2是f(k)的最小值点\begin{aligned} &\ \ \int \frac{dx}{x(ln\ x)^k}=\int \frac{1}{(ln\ x)^k}d(ln\ x)=\begin{cases}ln\ ln\ x+C,\ \ \ \ \ \ \ \ k=1,\\\\-\frac{1}{(k-1)ln^{k-1}x}+C,k \neq 1,\end{cases},\\\\ &\ \ 当k \le 1时,反常积分发散;当k \gt 1时,反常积分收敛.\\\\ &\ \ \int_{2}^{+\infty}\frac{dx}{x(ln\ x)^k}=\left[-\frac{1}{(k-1)ln^{k-1}x}\right]_{2}^{+\infty}=\frac{1}{(k-1)(ln\ 2)^{k-1}},记f(k)=\frac{1}{(k-1)(ln\ 2)^{k-1}},\\\\ &\ \ f'(k)=-\frac{1}{(k-1)^2(ln\ 2)^{2k-2}}[(ln\ 2)^{k-1}+(k-1)(ln\ 2)^{k-1}ln\ ln\ 2]=-\frac{1+(k-1)ln\ ln\ 2}{(k-1)^2(ln\ 2)^{k-1}}\\\\ &\ \ 令f'(k)=0,得k=1-\frac{1}{ln\ ln\ 2},当1 \lt k \lt 1-\frac{1}{ln\ ln\ 2}时,f'(k) \lt 0,当k \gt 1-\frac{1}{ln\ ln\ 2}时,f'(k) \gt 0,\\\\ &\ \ 所以k=1-\frac{1}{ln\ ln\ 2}是f(k)的最小值点 & \end{aligned} ∫x(ln x)kdx=∫(ln x)k1d(ln x)=⎩⎨⎧ln ln x+C, k=1,−(k−1)lnk−1x1+C,k=1,, 当k≤1时,反常积分发散;当k>1时,反常积分收敛. ∫2+∞x(ln x)kdx=[−(k−1)lnk−1x1]2+∞=(k−1)(ln 2)k−11,记f(k)=(k−1)(ln 2)k−11, f′(k)=−(k−1)2(ln 2)2k−21[(ln 2)k−1+(k−1)(ln 2)k−1ln ln 2]=−(k−1)2(ln 2)k−11+(k−1)ln ln 2 令f′(k)=0,得k=1−ln ln 21,当1<k<1−ln ln 21时,f′(k)<0,当k>1−ln ln 21时,f′(k)>0, 所以k=1−ln ln 21是f(k)的最小值点
3. 利用递推公式计算反常积分In=∫0+∞xne−xdx (n∈N).\begin{aligned}&3. \ 利用递推公式计算反常积分I_n=\int_{0}^{+\infty}x^ne^{-x}dx\ (n \in N).&\end{aligned}3. 利用递推公式计算反常积分In=∫0+∞xne−xdx (n∈N).
解:
当n=0时,I0=∫0+∞e−xdx=−∫0+∞e−xd(−x)=[−e−x]0+∞=1 当n≥1时,In=∫0+∞xne−xdx=−∫0+∞xnd(e−x)=−[xne−x]0+∞+n∫0+∞xn−1e−xdx=nIn−1, 所以,In=n!\begin{aligned} &\ \ 当n=0时,I_0=\int_{0}^{+\infty}e^{-x}dx=-\int_{0}^{+\infty}e^{-x}d(-x)=[-e^{-x}]_{0}^{+\infty}=1\\\\ &\ \ 当n \ge 1时,I_n=\int_{0}^{+\infty}x^ne^{-x}dx=-\int_{0}^{+\infty}x^nd(e^{-x})=-[x^ne^{-x}]_{0}^{+\infty}+n\int_{0}^{+\infty}x^{n-1}e^{-x}dx=nI_{n-1},\\\\ &\ \ 所以,I_n=n! & \end{aligned} 当n=0时,I0=∫0+∞e−xdx=−∫0+∞e−xd(−x)=[−e−x]0+∞=1 当n≥1时,In=∫0+∞xne−xdx=−∫0+∞xnd(e−x)=−[xne−x]0+∞+n∫0+∞xn−1e−xdx=nIn−1, 所以,In=n!
3. 计算反常积分∫01ln xdx.\begin{aligned}&3. \ 计算反常积分\int_{0}^{1}ln\ xdx.&\end{aligned}3. 计算反常积分∫01ln xdx.
解:
∫ln xdx=xln x−∫x⋅1xdx=xln x−x+C,所以, ∫01ln xdx=[xln x−x]01=−1−limx→0+(xln x−x)=−1\begin{aligned} &\ \ \int ln\ xdx=xln\ x-\int x\cdot \frac{1}{x}dx=xln\ x-x+C,所以,\\\\ &\ \ \int_{0}^{1}ln\ xdx=[xln\ x-x]_{0}^{1}=-1-\lim_{x \rightarrow 0^+}(xln\ x-x)=-1 & \end{aligned} ∫ln xdx=xln x−∫x⋅x1dx=xln x−x+C,所以, ∫01ln xdx=[xln x−x]01=−1−x→0+lim(xln x−x)=−1