高等数学(第七版)同济大学 习题5-4 个人解答

本文探讨了高等数学中反常积分的计算方法及其性质,包括不同类型的反常积分的收敛性判断及计算,递推公式的应用,以及特定反常积分的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高等数学(第七版)同济大学 习题5-4

 

1. 判定下列各反常积分的收敛性,如果收敛,计算反常积分的值:\begin{aligned}&1. \ 判定下列各反常积分的收敛性,如果收敛,计算反常积分的值:&\end{aligned}1. 判定下列各反常积分的收敛性,如果收敛,计算反常积分的值:

  (1)  ∫1+∞dxx4;                                               (2)  ∫1+∞dxx;  (3)  ∫0+∞e−axdx (a>0);                           (4)  ∫0+∞dx(1+x)(1+x2);  (5)  ∫0+∞e−ptsin ωtdt (p>0,ω>0);    (6)  ∫−∞+∞dxx2+2x+2;  (7)  ∫01xdx1−x2;                                         (8)  ∫02dx(1−x)2;  (9)  ∫12xdxx−1;                                           (10)  ∫1edxx1−(ln x)2\begin{aligned} &\ \ (1)\ \ \int_{1}^{+\infty}\frac{dx}{x^4};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \int_{1}^{+\infty}\frac{dx}{\sqrt{x}};\\\\ &\ \ (3)\ \ \int_{0}^{+\infty}e^{-ax}dx\ (a \gt 0);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \int_{0}^{+\infty}\frac{dx}{(1+x)(1+x^2)};\\\\ &\ \ (5)\ \ \int_{0}^{+\infty}e^{-pt}sin\ \omega tdt\ (p \gt 0,\omega \gt 0);\ \ \ \ (6)\ \ \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2};\\\\ &\ \ (7)\ \ \int_{0}^{1}\frac{xdx}{\sqrt{1-x^2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \int_{0}^{2}\frac{dx}{(1-x)^2};\\\\ &\ \ (9)\ \ \int_{1}^{2}\frac{xdx}{\sqrt{x-1}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10)\ \ \int_{1}^{e}\frac{dx}{x\sqrt{1-(ln\ x)^2}} & \end{aligned}  (1)  1+x4dx                                               (2)  1+xdx  (3)  0+eaxdx (a>0)                           (4)  0+(1+x)(1+x2)dx  (5)  0+eptsin ωtdt (p>0ω>0)    (6)  +x2+2x+2dx  (7)  011x2xdx                                         (8)  02(1x)2dx  (9)  12x1xdx                                           (10)  1ex1(ln x)2dx

解:

  (1) ∫1+∞dxx4=[−13x3]1+∞=13  (2) ∫1tdxx=[2x]1t=2t−2,当t→+∞时,极限不存在,所以,反常积分是发散的。  (3) ∫0+∞e−axdx=−1a∫0+∞e−axd(−ax)=[−1ae−ax]0+∞=1a  (4) ∫0+∞dx(1+x)(1+x2)=12∫0+∞(11+x+1−x1+x2)dx=[14ln(1+x)21+x2+12arctan x]0+∞=π4  (5) ∫e−ptsin ωtdt=−1p∫sin ωtd(e−pt)=−1pe−ptsin ωt+ωp∫e−ptcos ωtdt=       −1pe−ptsin ωt−ωp2∫cos ωtd(e−pt)=−1pe−ptsin ωt−ωp2e−ptcos ωt−ω2p2∫e−ptsin ωtdt,得,       ∫e−ptsin ωtdt=−pe−ptsin ωt−ωe−ptcos ωtp2+ω2+C,       所以,∫0+∞e−ptsin ωtdt=[−pe−ptsin ωt−ωe−ptcos ωtp2+ω2]0+∞=ωp2+ω2  (6) ∫−∞+∞dxx2+2x+2=∫−∞01(x+1)2+1d(x+1)+∫0+∞1(x+1)2+1d(x+1)=        [arctan(x+1)]−∞0+[arctan(x+1)]0+∞=π  (7) ∫01xdx1−x2=[−1−x2]01=1  (8) ∫0tdx(1−x)2=[11−x]0t=11−t−1,当t→1时极限不存在,所以,反常积分发散。  (9) 令u=x−1,则x=u2+1,dx=2udu,得∫12xdxx−1=2∫01(u2+1)du=83  (10) ∫1edxx1−(ln x)2=∫1ed(ln x)1−(ln x)2=[arcsin ln x]1e=π2\begin{aligned} &\ \ (1)\ \int_{1}^{+\infty}\frac{dx}{x^4}=\left[-\frac{1}{3x^3}\right]_{1}^{+\infty}=\frac{1}{3}\\\\ &\ \ (2)\ \int_{1}^{t}\frac{dx}{\sqrt{x}}=[2\sqrt{x}]_{1}^{t}=2\sqrt{t}-2,当t \rightarrow +\infty时,极限不存在,所以,反常积分是发散的。\\\\ &\ \ (3)\ \int_{0}^{+\infty}e^{-ax}dx=-\frac{1}{a}\int_{0}^{+\infty}e^{-ax}d(-ax)=\left[-\frac{1}{a}e^{-ax}\right]_{0}^{+\infty}=\frac{1}{a}\\\\ &\ \ (4)\ \int_{0}^{+\infty}\frac{dx}{(1+x)(1+x^2)}=\frac{1}{2}\int_{0}^{+\infty}\left(\frac{1}{1+x}+\frac{1-x}{1+x^2}\right)dx=\left[\frac{1}{4}ln\frac{(1+x)^2}{1+x^2}+\frac{1}{2}arctan\ x\right]_{0}^{+\infty}=\frac{\pi}{4}\\\\ &\ \ (5)\ \int e^{-pt}sin\ \omega tdt=-\frac{1}{p}\int sin\ \omega td(e^{-pt})=-\frac{1}{p}e^{-pt}sin\ \omega t+\frac{\omega}{p}\int e^{-pt}cos\ \omega tdt=\\\\ &\ \ \ \ \ \ \ -\frac{1}{p}e^{-pt}sin\ \omega t-\frac{\omega}{p^2}\int cos\ \omega td(e^{-pt})=-\frac{1}{p}e^{-pt}sin\ \omega t-\frac{\omega}{p^2}e^{-pt}cos\ \omega t-\frac{\omega^2}{p^2}\int e^{-pt}sin\ \omega tdt,得,\\\\ &\ \ \ \ \ \ \ \int e^{-pt}sin\ \omega tdt=\frac{-pe^{-pt}sin\ \omega t-\omega e^{-pt}cos\ \omega t}{p^2+\omega^2}+C,\\\\ &\ \ \ \ \ \ \ 所以,\int_{0}^{+\infty}e^{-pt}sin\ \omega tdt=\left[\frac{-pe^{-pt}sin\ \omega t-\omega e^{-pt}cos\ \omega t}{p^2+\omega^2}\right]_{0}^{+\infty}=\frac{\omega}{p^2+\omega^2}\\\\ &\ \ (6)\ \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2}=\int_{-\infty}^{0}\frac{1}{(x+1)^2+1}d(x+1)+\int_{0}^{+\infty}\frac{1}{(x+1)^2+1}d(x+1)=\\\\ &\ \ \ \ \ \ \ \ [arctan(x+1)]_{-\infty}^{0}+[arctan(x+1)]_{0}^{+\infty}=\pi\\\\ &\ \ (7)\ \int_{0}^{1}\frac{xdx}{\sqrt{1-x^2}}=[-\sqrt{1-x^2}]_{0}^{1}=1\\\\ &\ \ (8)\ \int_{0}^{t}\frac{dx}{(1-x)^2}=\left[\frac{1}{1-x}\right]_{0}^{t}=\frac{1}{1-t}-1,当t \rightarrow 1时极限不存在,所以,反常积分发散。\\\\ &\ \ (9)\ 令u=\sqrt{x-1},则x=u^2+1,dx=2udu,得\int_{1}^{2}\frac{xdx}{\sqrt{x-1}}=2\int_{0}^{1}(u^2+1)du=\frac{8}{3}\\\\ &\ \ (10)\ \int_{1}^{e}\frac{dx}{x\sqrt{1-(ln\ x)^2}}=\int_{1}^{e}\frac{d(ln\ x)}{\sqrt{1-(ln\ x)^2}}=[arcsin\ ln\ x]_{1}^{e}=\frac{\pi}{2} & \end{aligned}  (1) 1+x4dx=[3x31]1+=31  (2) 1txdx=[2x]1t=2t2,当t+时,极限不存在,所以,反常积分是发散的。  (3) 0+eaxdx=a10+eaxd(ax)=[a1eax]0+=a1  (4) 0+(1+x)(1+x2)dx=210+(1+x1+1+x21x)dx=[41ln1+x2(1+x)2+21arctan x]0+=4π  (5) eptsin ωtdt=p1sin ωtd(ept)=p1eptsin ωt+pωeptcos ωtdt=       p1eptsin ωtp2ωcos ωtd(ept)=p1eptsin ωtp2ωeptcos ωtp2ω2eptsin ωtdt,得,       eptsin ωtdt=p2+ω2peptsin ωtωeptcos ωt+C       所以,0+eptsin ωtdt=[p2+ω2peptsin ωtωeptcos ωt]0+=p2+ω2ω  (6) +x2+2x+2dx=0(x+1)2+11d(x+1)+0+(x+1)2+11d(x+1)=        [arctan(x+1)]0+[arctan(x+1)]0+=π  (7) 011x2xdx=[1x2]01=1  (8) 0t(1x)2dx=[1x1]0t=1t11,当t1时极限不存在,所以,反常积分发散。  (9) u=x1,则x=u2+1dx=2udu,得12x1xdx=201(u2+1)du=38  (10) 1ex1(ln x)2dx=1e1(ln x)2d(ln x)=[arcsin ln x]1e=2π


2. 当k为何值时,反常积分∫2+∞dxx(ln x)k收敛?当k为何值时,这反常积分发散?又当k为何值时,    这反常积分取得最小值?\begin{aligned}&2. \ 当k为何值时,反常积分\int_{2}^{+\infty}\frac{dx}{x(ln\ x)^k}收敛?当k为何值时,这反常积分发散?又当k为何值时,\\\\&\ \ \ \ 这反常积分取得最小值?&\end{aligned}2. k为何值时,反常积分2+x(ln x)kdx收敛?当k为何值时,这反常积分发散?又当k为何值时,    这反常积分取得最小值?
解:

  ∫dxx(ln x)k=∫1(ln x)kd(ln x)={ln ln x+C,        k=1,−1(k−1)lnk−1x+C,k≠1,,  当k≤1时,反常积分发散;当k>1时,反常积分收敛.  ∫2+∞dxx(ln x)k=[−1(k−1)lnk−1x]2+∞=1(k−1)(ln 2)k−1,记f(k)=1(k−1)(ln 2)k−1,  f′(k)=−1(k−1)2(ln 2)2k−2[(ln 2)k−1+(k−1)(ln 2)k−1ln ln 2]=−1+(k−1)ln ln 2(k−1)2(ln 2)k−1  令f′(k)=0,得k=1−1ln ln 2,当1<k<1−1ln ln 2时,f′(k)<0,当k>1−1ln ln 2时,f′(k)>0,  所以k=1−1ln ln 2是f(k)的最小值点\begin{aligned} &\ \ \int \frac{dx}{x(ln\ x)^k}=\int \frac{1}{(ln\ x)^k}d(ln\ x)=\begin{cases}ln\ ln\ x+C,\ \ \ \ \ \ \ \ k=1,\\\\-\frac{1}{(k-1)ln^{k-1}x}+C,k \neq 1,\end{cases},\\\\ &\ \ 当k \le 1时,反常积分发散;当k \gt 1时,反常积分收敛.\\\\ &\ \ \int_{2}^{+\infty}\frac{dx}{x(ln\ x)^k}=\left[-\frac{1}{(k-1)ln^{k-1}x}\right]_{2}^{+\infty}=\frac{1}{(k-1)(ln\ 2)^{k-1}},记f(k)=\frac{1}{(k-1)(ln\ 2)^{k-1}},\\\\ &\ \ f'(k)=-\frac{1}{(k-1)^2(ln\ 2)^{2k-2}}[(ln\ 2)^{k-1}+(k-1)(ln\ 2)^{k-1}ln\ ln\ 2]=-\frac{1+(k-1)ln\ ln\ 2}{(k-1)^2(ln\ 2)^{k-1}}\\\\ &\ \ 令f'(k)=0,得k=1-\frac{1}{ln\ ln\ 2},当1 \lt k \lt 1-\frac{1}{ln\ ln\ 2}时,f'(k) \lt 0,当k \gt 1-\frac{1}{ln\ ln\ 2}时,f'(k) \gt 0,\\\\ &\ \ 所以k=1-\frac{1}{ln\ ln\ 2}是f(k)的最小值点 & \end{aligned}  x(ln x)kdx=(ln x)k1d(ln x)=ln ln x+C        k=1(k1)lnk1x1+Ck=1  k1时,反常积分发散;当k>1时,反常积分收敛.  2+x(ln x)kdx=[(k1)lnk1x1]2+=(k1)(ln 2)k11,记f(k)=(k1)(ln 2)k11  f(k)=(k1)2(ln 2)2k21[(ln 2)k1+(k1)(ln 2)k1ln ln 2]=(k1)2(ln 2)k11+(k1)ln ln 2  f(k)=0,得k=1ln ln 21,当1<k<1ln ln 21时,f(k)<0,当k>1ln ln 21时,f(k)>0  所以k=1ln ln 21f(k)的最小值点


3. 利用递推公式计算反常积分In=∫0+∞xne−xdx (n∈N).\begin{aligned}&3. \ 利用递推公式计算反常积分I_n=\int_{0}^{+\infty}x^ne^{-x}dx\ (n \in N).&\end{aligned}3. 利用递推公式计算反常积分In=0+xnexdx (nN).
解:

  当n=0时,I0=∫0+∞e−xdx=−∫0+∞e−xd(−x)=[−e−x]0+∞=1  当n≥1时,In=∫0+∞xne−xdx=−∫0+∞xnd(e−x)=−[xne−x]0+∞+n∫0+∞xn−1e−xdx=nIn−1,  所以,In=n!\begin{aligned} &\ \ 当n=0时,I_0=\int_{0}^{+\infty}e^{-x}dx=-\int_{0}^{+\infty}e^{-x}d(-x)=[-e^{-x}]_{0}^{+\infty}=1\\\\ &\ \ 当n \ge 1时,I_n=\int_{0}^{+\infty}x^ne^{-x}dx=-\int_{0}^{+\infty}x^nd(e^{-x})=-[x^ne^{-x}]_{0}^{+\infty}+n\int_{0}^{+\infty}x^{n-1}e^{-x}dx=nI_{n-1},\\\\ &\ \ 所以,I_n=n! & \end{aligned}  n=0时,I0=0+exdx=0+exd(x)=[ex]0+=1  n1时,In=0+xnexdx=0+xnd(ex)=[xnex]0++n0+xn1exdx=nIn1  所以,In=n!


3. 计算反常积分∫01ln xdx.\begin{aligned}&3. \ 计算反常积分\int_{0}^{1}ln\ xdx.&\end{aligned}3. 计算反常积分01ln xdx.
解:

  ∫ln xdx=xln x−∫x⋅1xdx=xln x−x+C,所以,  ∫01ln xdx=[xln x−x]01=−1−lim⁡x→0+(xln x−x)=−1\begin{aligned} &\ \ \int ln\ xdx=xln\ x-\int x\cdot \frac{1}{x}dx=xln\ x-x+C,所以,\\\\ &\ \ \int_{0}^{1}ln\ xdx=[xln\ x-x]_{0}^{1}=-1-\lim_{x \rightarrow 0^+}(xln\ x-x)=-1 & \end{aligned}  ln xdx=xln xxx1dx=xln xx+C,所以,  01ln xdx=[xln xx]01=1x0+lim(xln xx)=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值