高等数学(第七版)同济大学 习题9-5 个人解答

本文详细解答了高等数学中关于偏导数的十个经典问题,涉及复合函数、隐函数、多元方程组等,包括求导法则、链式法则和隐函数求导技巧。通过实例演示,帮助读者理解并掌握求解偏导数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高等数学(第七版)同济大学 习题9-5

 

1. 设sin y+ex−xy2=0,求dydx.\begin{aligned}&1. \ 设sin\ y+e^x-xy^2=0,求\frac{dy}{dx}.&\end{aligned}1. sin y+exxy2=0,求dxdy.
解:

  设F(x, y)=sin y+ex−xy2,则Fx=ex−y2,Fy=cos y−2xy,当Fy≠0时,  有dydx=−FxFy=−ex−y2cos y−2xy=y2−excos y−2xy\begin{aligned} &\ \ 设F(x,\ y)=sin\ y+e^x-xy^2,则F_x=e^x-y^2,F_y=cos\ y-2xy,当F_y \neq 0时,\\\\ &\ \ 有\frac{dy}{dx}=-\frac{F_x}{F_y}=-\frac{e^x-y^2}{cos\ y-2xy}=\frac{y^2-e^x}{cos\ y-2xy} & \end{aligned}  F(x, y)=sin y+exxy2,则Fx=exy2Fy=cos y2xy,当Fy=0时,  dxdy=FyFx=cos y2xyexy2=cos y2xyy2ex


2. 设lnx2+y2=arctanyx,求dydx.\begin{aligned}&2. \ 设ln\sqrt{x^2+y^2}=arctan\frac{y}{x},求\frac{dy}{dx}.&\end{aligned}2. lnx2+y2=arctanxy,求dxdy.
解:

  设F(x, y)=lnx2+y2−arctanyx,则一阶偏导数分别为  Fx=1x2+y2⋅2x2x2+y2−11+(yx)2⋅(−yx2)=x+yx2+y2,  Fy=1x2+y2⋅2y2x2+y2−11+(yx)2⋅1x=y−xx2+y2,  当Fy≠0时,有dydx=−FxFy=−x+yx2+y2y−xx2+y2=x+yx−y.\begin{aligned} &\ \ 设F(x, \ y)=ln\sqrt{x^2+y^2}-arctan\frac{y}{x},则一阶偏导数分别为\\\\ &\ \ F_x=\frac{1}{\sqrt{x^2+y^2}}\cdot \frac{2x}{2\sqrt{x^2+y^2}}-\frac{1}{1+\left(\frac{y}{x}\right)^2}\cdot \left(-\frac{y}{x^2}\right)=\frac{x+y}{x^2+y^2},\\\\ &\ \ F_y=\frac{1}{\sqrt{x^2+y^2}}\cdot \frac{2y}{2\sqrt{x^2+y^2}}-\frac{1}{1+\left(\frac{y}{x}\right)^2}\cdot \frac{1}{x}=\frac{y-x}{x^2+y^2},\\\\ &\ \ 当F_y \neq 0时,有\frac{dy}{dx}=-\frac{F_x}{F_y}=-\frac{\frac{x+y}{x^2+y^2}}{\frac{y-x}{x^2+y^2}}=\frac{x+y}{x-y}. & \end{aligned}  F(x, y)=lnx2+y2arctanxy,则一阶偏导数分别为  Fx=x2+y212x2+y22x1+(xy)21(x2y)=x2+y2x+y  Fy=x2+y212x2+y22y1+(xy)21x1=x2+y2yx  Fy=0时,有dxdy=FyFx=x2+y2yxx2+y2x+y=xyx+y.


3. 设x+2y+z−2xyz=0,求∂z∂x及∂z∂y.\begin{aligned}&3. \ 设x+2y+z-2\sqrt{xyz}=0,求\frac{\partial z}{\partial x}及\frac{\partial z}{\partial y}.&\end{aligned}3. x+2y+z2xyz=0,求xzyz.
解:

  设F(x, y, z)=x+2y+z−2xyz,则Fx=1−yzxyz,Fy=2−xzxyz,Fz=1−xyxyz,  当Fz≠0时,有∂z∂x=−FxFz=yz−xyzxyz−xy,∂z∂y=−FyFz=xz−2xyzxyz−xy.\begin{aligned} &\ \ 设F(x, \ y, \ z)=x+2y+z-2\sqrt{xyz},则F_x=1-\frac{yz}{\sqrt{xyz}},F_y=2-\frac{xz}{\sqrt{xyz}},F_z=1-\frac{xy}{\sqrt{xyz}},\\\\ &\ \ 当F_z \neq 0时,有\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}=\frac{yz-\sqrt{xyz}}{\sqrt{xyz}-xy},\frac{\partial z}{\partial y}=-\frac{F_y}{F_z}=\frac{xz-2\sqrt{xyz}}{\sqrt{xyz}-xy}. & \end{aligned}  F(x, y, z)=x+2y+z2xyz,则Fx=1xyzyzFy=2xyzxzFz=1xyzxy  Fz=0时,有xz=FzFx=xyzxyyzxyzyz=FzFy=xyzxyxz2xyz.


4. 设xz=lnzy,求∂z∂x及∂z∂y.\begin{aligned}&4. \ 设\frac{x}{z}=ln\frac{z}{y},求\frac{\partial z}{\partial x}及\frac{\partial z}{\partial y}.&\end{aligned}4. zx=lnyz,求xzyz.
解:

  设F(x, y, z)=xz−lnzy,则Fx=1z,Fy=−1zy⋅(−zy2)=1y,Fz=−xz2−1zy⋅1y=−x+zz2,  当Fz≠0时,有∂z∂x=−FxFz=−1z−x+zz2=zx+z,∂z∂y=−FyFz=−1y−x+zz2=z2y(x+z).\begin{aligned} &\ \ 设F(x, \ y, \ z)=\frac{x}{z}-ln\frac{z}{y},则F_x=\frac{1}{z},F_y=-\frac{1}{\frac{z}{y}}\cdot \left(-\frac{z}{y^2}\right)=\frac{1}{y},F_z=-\frac{x}{z^2}-\frac{1}{\frac{z}{y}}\cdot \frac{1}{y}=-\frac{x+z}{z^2},\\\\ &\ \ 当F_z \neq 0时,有\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}=\frac{-\frac{1}{z}}{-\frac{x+z}{z^2}}=\frac{z}{x+z},\frac{\partial z}{\partial y}=-\frac{F_y}{F_z}=\frac{-\frac{1}{y}}{-\frac{x+z}{z^2}}=\frac{z^2}{y(x+z)}. & \end{aligned}  F(x, y, z)=zxlnyz,则Fx=z1Fy=yz1(y2z)=y1Fz=z2xyz1y1=z2x+z  Fz=0时,有xz=FzFx=z2x+zz1=x+zzyz=FzFy=z2x+zy1=y(x+z)z2.


5. 设2sin(x+2y−3z)=x+2y−3z,证明∂z∂x+∂z∂y=1.\begin{aligned}&5. \ 设2sin(x+2y-3z)=x+2y-3z,证明\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1.&\end{aligned}5. 2sin(x+2y3z)=x+2y3z,证明xz+yz=1.
解:

  设F(x, y, z)=2sin(x+2y−3z)−x−2y+3z,则Fx=2cos(x+2y−3z)−1,  Fy=2cos(x+2y−3z)⋅2−2=2Fx,Fz=2cos(x+2y−3z)⋅(−3)+3=−3Fx,  当Fz≠0时,有∂z∂x+∂z∂y=−FxFz−FyFz=13+23=1.\begin{aligned} &\ \ 设F(x, \ y, \ z)=2sin(x+2y-3z)-x-2y+3z,则F_x=2cos(x+2y-3z)-1,\\\\ &\ \ F_y=2cos(x+2y-3z)\cdot 2-2=2F_x,F_z=2cos(x+2y-3z)\cdot (-3)+3=-3F_x,\\\\ &\ \ 当F_z \neq 0时,有\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=-\frac{F_x}{F_z}-\frac{F_y}{F_z}=\frac{1}{3}+\frac{2}{3}=1. & \end{aligned}  F(x, y, z)=2sin(x+2y3z)x2y+3z,则Fx=2cos(x+2y3z)1  Fy=2cos(x+2y3z)22=2FxFz=2cos(x+2y3z)(3)+3=3Fx  Fz=0时,有xz+yz=FzFxFzFy=31+32=1.


6. 设x=x(y, z),y=y(x, z),z=z(x, y)都是由方程F(x, y, z)=0所确定的具有连续偏导数的函数,    证明∂x∂y⋅∂y∂z⋅∂z∂x=−1.\begin{aligned}&6. \ 设x=x(y, \ z),y=y(x, \ z),z=z(x, \ y)都是由方程F(x, \ y, \ z)=0所确定的具有连续偏导数的函数,\\\\&\ \ \ \ 证明\frac{\partial x}{\partial y}\cdot \frac{\partial y}{\partial z}\cdot \frac{\partial z}{\partial x}=-1.&\end{aligned}6. x=x(y, z)y=y(x, z)z=z(x, y)都是由方程F(x, y, z)=0所确定的具有连续偏导数的函数,    证明yxzyxz=1.
解:

  因为∂x∂y=−FyFx,∂y∂z=−FzFy,∂z∂x=−FxFz,所以∂x∂y⋅∂y∂z⋅∂z∂x=(−FyFx)⋅(−FzFy)⋅(−FxFz)=−1\begin{aligned} &\ \ 因为\frac{\partial x}{\partial y}=-\frac{F_y}{F_x},\frac{\partial y}{\partial z}=-\frac{F_z}{F_y},\frac{\partial z}{\partial x}=-\frac{F_x}{F_z},所以\frac{\partial x}{\partial y}\cdot \frac{\partial y}{\partial z}\cdot \frac{\partial z}{\partial x}=\left(-\frac{F_y}{F_x}\right)\cdot \left(-\frac{F_z}{F_y}\right)\cdot \left(-\frac{F_x}{F_z}\right)=-1 & \end{aligned}  因为yx=FxFyzy=FyFzxz=FzFx,所以yxzyxz=(FxFy)(FyFz)(FzFx)=1


7. 设Φ(u, v)具有连续偏导数,证明由方程Φ(cx−az, cy−bz)=0所确定的函数z=f(x, y)满足    a∂z∂x+b∂z∂y=c.\begin{aligned}&7. \ 设\varPhi(u, \ v)具有连续偏导数,证明由方程\varPhi(cx-az, \ cy-bz)=0所确定的函数z=f(x, \ y)满足\\\\&\ \ \ \ a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=c.&\end{aligned}7. Φ(u, v)具有连续偏导数,证明由方程Φ(cxaz, cybz)=0所确定的函数z=f(x, y)满足    axz+byz=c.
解:

  令u=cx−az,v=cy−bz,则Φx=Φu⋅∂u∂x=cΦu,Φy=Φv⋅∂v∂y=cΦv,  Φz=Φu⋅∂u∂z+Φv⋅∂v∂z=−aΦu−bΦv,  当Φz≠0时,有∂z∂x=−ΦxΦz=cΦuaΦu+bΦv,∂z∂y=−ΦyΦz=cΦvaΦu+bΦv,  得a∂z∂x+b∂z∂y=a⋅cΦuaΦu+bΦv+b⋅cΦvaΦu+bΦv=c.\begin{aligned} &\ \ 令u=cx-az,v=cy-bz,则\varPhi_x=\varPhi_u\cdot \frac{\partial u}{\partial x}=c\varPhi_u,\varPhi_y=\varPhi_v\cdot \frac{\partial v}{\partial y}=c\varPhi_v,\\\\ &\ \ \varPhi_z=\varPhi_u\cdot \frac{\partial u}{\partial z}+\varPhi_v\cdot \frac{\partial v}{\partial z}=-a\varPhi_u-b\varPhi_v,\\\\ &\ \ 当\varPhi_z \neq 0时,有\frac{\partial z}{\partial x}=-\frac{\varPhi_x}{\varPhi_z}=\frac{c\varPhi_u}{a\varPhi_u+b\varPhi_v},\frac{\partial z}{\partial y}=-\frac{\varPhi_y}{\varPhi_z}=\frac{c\varPhi_v}{a\varPhi_u+b\varPhi_v},\\\\ &\ \ 得a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=a\cdot \frac{c\varPhi_u}{a\varPhi_u+b\varPhi_v}+b\cdot \frac{c\varPhi_v}{a\varPhi_u+b\varPhi_v}=c. & \end{aligned}  u=cxazv=cybz,则Φx=Φuxu=cΦuΦy=Φvyv=cΦv  Φz=Φuzu+Φvzv=aΦubΦv  Φz=0时,有xz=ΦzΦx=aΦu+bΦvcΦuyz=ΦzΦy=aΦu+bΦvcΦv  axz+byz=aaΦu+bΦvcΦu+baΦu+bΦvcΦv=c.


8. 设ez−xyz=0,求∂2z∂x2.\begin{aligned}&8. \ 设e^z-xyz=0,求\frac{\partial^2 z}{\partial x^2}.&\end{aligned}8. ezxyz=0,求x22z.
解:

  设F(x, y, z)=ez−xyz,则Fx=−yz,Fz=ez−xy,当Fz≠0时,有∂z∂x=−FxFz=yzez−xy,  ∂2z∂x2=∂∂x(∂z∂x)=y∂z∂x(ez−xy)−yz(ez∂z∂x−y)(ez−xy)2=y2z−yz(ez⋅yzez−xy−y)(ez−xy)2=2y2zez−2xy3z−y2z2ez(ez−xy)3.\begin{aligned} &\ \ 设F(x, \ y, \ z)=e^z-xyz,则F_x=-yz,F_z=e^z-xy,当F_z \neq 0时,有\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}=\frac{yz}{e^z-xy},\\\\ &\ \ \frac{\partial^2 z}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{y\frac{\partial z}{\partial x}(e^z-xy)-yz\left(e^z\frac{\partial z}{\partial x}-y\right)}{(e^z-xy)^2}=\frac{y^2z-yz\left(e^z\cdot \frac{yz}{e^z-xy}-y\right)}{(e^z-xy)^2}=\frac{2y^2ze^z-2xy^3z-y^2z^2e^z}{(e^z-xy)^3}. & \end{aligned}  F(x, y, z)=ezxyz,则Fx=yzFz=ezxy,当Fz=0时,有xz=FzFx=ezxyyz  x22z=x(xz)=(ezxy)2yxz(ezxy)yz(ezxzy)=(ezxy)2y2zyz(ezezxyyzy)=(ezxy)32y2zez2xy3zy2z2ez.


9. 设z3−3xyz=a3,求∂2z∂x∂y.\begin{aligned}&9. \ 设z^3-3xyz=a^3,求\frac{\partial^2 z}{\partial x\partial y}.&\end{aligned}9. z33xyz=a3,求xy2z.
解:

  设F(x, y, z)=z3−3xyz−a3,则Fx=−3yz,Fy=−3xz,Fz=3z2−3xy,当Fz≠0时,  有∂z∂x=−FxFz=yzz2−xy,∂z∂y=−FyFz=xzz2−xy,  ∂2z∂x∂y=∂∂y(∂z∂x)=∂∂y(yzz2−xy)=(z+y∂z∂y)(z2−xy)−yz(2z∂z∂y−x)(z2−xy)2=  (z+xyzz2−xy)⋅(z2−xy)−yz(2xz2z2−xy−x)(z2−xy)2=z(z4−2xyz2−x2y2)(z2−xy)3\begin{aligned} &\ \ 设F(x, \ y, \ z)=z^3-3xyz-a^3,则F_x=-3yz,F_y=-3xz,F_z=3z^2-3xy,当F_z \neq 0时,\\\\ &\ \ 有\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}=\frac{yz}{z^2-xy},\frac{\partial z}{\partial y}=-\frac{F_y}{F_z}=\frac{xz}{z^2-xy},\\\\ &\ \ \frac{\partial^2 z}{\partial x\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial y}\left(\frac{yz}{z^2-xy}\right)=\frac{\left(z+y\frac{\partial z}{\partial y}\right)(z^2-xy)-yz\left(2z\frac{\partial z}{\partial y}-x\right)}{(z^2-xy)^2}=\\\\ &\ \ \frac{\left(z+\frac{xyz}{z^2-xy}\right)\cdot(z^2-xy)-yz\left(\frac{2xz^2}{z^2-xy}-x\right)}{(z^2-xy)^2}=\frac{z(z^4-2xyz^2-x^2y^2)}{(z^2-xy)^3} & \end{aligned}  F(x, y, z)=z33xyza3,则Fx=3yzFy=3xzFz=3z23xy,当Fz=0时,  xz=FzFx=z2xyyzyz=FzFy=z2xyxz  xy2z=y(xz)=y(z2xyyz)=(z2xy)2(z+yyz)(z2xy)yz(2zyzx)=  (z2xy)2(z+z2xyxyz)(z2xy)yz(z2xy2xz2x)=(z2xy)3z(z42xyz2x2y2)


10. 求由下列方程组所确定的函数的导数或偏导数:\begin{aligned}&10. \ 求由下列方程组所确定的函数的导数或偏导数:&\end{aligned}10. 求由下列方程组所确定的函数的导数或偏导数:

  (1)  设{z=x2+y2,x2+2y2+3z2=20,求dydx,dzdx;  (2)  设{x+y+z=0,x2+y2+z2=1,求dxdz,dydz;  (3)  设{u=f(ux, v+y),v=g(u−x, v2y),其中f,g具有一阶连续偏导数,求∂u∂x,∂v∂x;  (4)  设{x=eu+usin v,y=eu−ucos v,求∂u∂x,∂u∂y,∂v∂x,∂v∂y.\begin{aligned} &\ \ (1)\ \ 设\begin{cases}z=x^2+y^2,\\\\x^2+2y^2+3z^2=20,\end{cases}求\frac{dy}{dx},\frac{dz}{dx};\\\\ &\ \ (2)\ \ 设\begin{cases}x+y+z=0,\\\\x^2+y^2+z^2=1,\end{cases}求\frac{dx}{dz},\frac{dy}{dz};\\\\ &\ \ (3)\ \ 设\begin{cases}u=f(ux, \ v+y),\\\\v=g(u-x, \ v^2y),\end{cases}其中f,g具有一阶连续偏导数,求\frac{\partial u}{\partial x},\frac{\partial v}{\partial x};\\\\ &\ \ (4)\ \ 设\begin{cases}x=e^u+usin\ v,\\\\y=e^u-ucos\ v,\end{cases}求\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}. & \end{aligned}  (1)  z=x2+y2x2+2y2+3z2=20dxdydxdz  (2)  x+y+z=0x2+y2+z2=1dzdxdzdy  (3)  u=f(ux, v+y)v=g(ux, v2y)其中fg具有一阶连续偏导数,求xuxv  (4)  x=eu+usin vy=euucos vxuyuxvyv.

解:

  (1) 对两方程两端对x求导,得{dzdx=2x+2ydydx,2x+4ydydx+6zdzdx=0.,整理得{2ydydx−dzdx=−2x,2ydydx+3zdzdx=−x.,        当D=∣2y−12y3z∣=6yz+2y≠0时,解方程组得dydx=∣−2x−1−x3z∣D=−6xz−x6yz+2y=−x(6z+1)2y(3z+1),        dzdx=∣2y−2x2y−x∣D=2xy6yz+2y=x3z+1.  (2) 方程组确定两个一元隐函数:x=x(z)和y=y(z),对方程两端对z求导,整理得{dxdz+dydz=−1,2xdxdz+2ydydz=−2z.,        当D=∣112x2y∣=2(y−x)≠0时,解方程组得dxdz=∣−11−2z2y∣D=−2y+2z2(y−x)=y−zx−y,        dydz=∣1−12x−2z∣D=−2z+2x2(y−x)=z−xx−y.  (3) 方程组确定两个二元隐函数:u=u(x, y),v=v(x, y),分别对方程两端对x求偏导数,        得{∂u∂x=f1′⋅(u+x∂u∂x)+f2′⋅∂v∂x,∂v∂x=g1′⋅(∂u∂x−1)+2g2′yv⋅∂v∂x.,整理得{(xf1′−1)∂u∂x+f2′∂v∂x=−uf1′,g1′∂u∂x+(2yvg2′−1)∂v∂x=g1′.,        当D=∣xf1′−1f2′g1′2yvg2′−1∣=(xf1′−1)(2yvg2′−1)−f2′g1′≠0时,解方程组得        ∂u∂x=∣−uf1′f2′g1′2yvg2′−1∣D=−uf1′(2yvg2′−1)−f2′g1′(xf1′−1)(2yvg2′−1)−f2′g1′,        ∂v∂x=∣xf1′−1−uf1′g1′g1′∣D=g1′(xf1′+uf1′−1)(xf1′−1)(2yvg2′−1)−f2′g1′.  (4) 方程组确定的两个二元隐函数u=u(x, y),v=v(x, y)是已知函数的反函数,        令F(x, y, u, v)=x−eu−usin v,G(x, y, u, v)=y−eu+ucos v,        则Fx=1,Fy=0,Fu=−eu−sin v,Fv=−ucos v,Gx=0,Gy=1,Gu=−eu+cos v,Gv=−usin v,        当J=∂(F, G)∂(u, v)=∣−eu−sin v−ucos v−eu+cos v−usin v∣=ueu(sin v−cos v)+u≠0时,由隐函数求导公式得        ∂u∂x=−∂(F, G)∂(x, v)J=−∣1−ucos v0−usin v∣J=sin veu(sin v−cos v)+1,        ∂u∂y=−∂(F, G)∂(y, v)J=−∣0−ucos v1−usin v∣J=−cos veu(sin v−cos v)+1,        ∂v∂x=−∂(F, G)∂(u, x)J=−∣−eu−sin v1−eu+cos v0∣J=cos v−euu[eu(sin v−cos v)+1],        ∂v∂y=−∂(F, G)∂(u, y)J=−∣−eu−sin v0−eu+cos v1∣J=sin v+euu[eu(sin v−cos v)+1].\begin{aligned} &\ \ (1)\ 对两方程两端对x求导,得\begin{cases}\frac{dz}{dx}=2x+2y\frac{dy}{dx},\\\\2x+4y\frac{dy}{dx}+6z\frac{dz}{dx}=0.\end{cases},整理得\begin{cases}2y\frac{dy}{dx}-\frac{dz}{dx}=-2x,\\\\2y\frac{dy}{dx}+3z\frac{dz}{dx}=-x.\end{cases},\\\\ &\ \ \ \ \ \ \ \ 当D=\left|\begin{array}{cccc}2y &-1\\2y &3z\end{array}\right|=6yz+2y \neq 0时,解方程组得\frac{dy}{dx}=\frac{\left|\begin{array}{cccc}-2x &-1\\-x &3z\end{array}\right|}{D}=\frac{-6xz-x}{6yz+2y}=\frac{-x(6z+1)}{2y(3z+1)},\\\\ &\ \ \ \ \ \ \ \ \frac{dz}{dx}=\frac{\left|\begin{array}{cccc}2y &-2x\\2y &-x\end{array}\right|}{D}=\frac{2xy}{6yz+2y}=\frac{x}{3z+1}.\\\\ &\ \ (2)\ 方程组确定两个一元隐函数:x=x(z)和y=y(z),对方程两端对z求导,整理得\begin{cases}\frac{dx}{dz}+\frac{dy}{dz}=-1,\\\\2x\frac{dx}{dz}+2y\frac{dy}{dz}=-2z.\end{cases},\\\\ &\ \ \ \ \ \ \ \ 当D=\left|\begin{array}{cccc}1 &1\\2x &2y\end{array}\right|=2(y-x) \neq 0时,解方程组得\frac{dx}{dz}=\frac{\left|\begin{array}{cccc}-1 &1\\-2z &2y\end{array}\right|}{D}=\frac{-2y+2z}{2(y-x)}=\frac{y-z}{x-y},\\\\ &\ \ \ \ \ \ \ \ \frac{dy}{dz}=\frac{\left|\begin{array}{cccc}1 &-1\\2x &-2z\end{array}\right|}{D}=\frac{-2z+2x}{2(y-x)}=\frac{z-x}{x-y}.\\\\ &\ \ (3)\ 方程组确定两个二元隐函数:u=u(x,\ y),v=v(x, \ y),分别对方程两端对x求偏导数,\\\\ &\ \ \ \ \ \ \ \ 得\begin{cases}\frac{\partial u}{\partial x}=f'_1\cdot \left(u+x\frac{\partial u}{\partial x}\right)+f'_2\cdot \frac{\partial v}{\partial x},\\\\\frac{\partial v}{\partial x}=g'_1\cdot \left(\frac{\partial u}{\partial x}-1\right)+2g'_2yv\cdot \frac{\partial v}{\partial x}.\end{cases},整理得\begin{cases}(xf'_1-1)\frac{\partial u}{\partial x}+f'_2\frac{\partial v}{\partial x}=-uf'_1,\\\\g'_1\frac{\partial u}{\partial x}+(2yvg'_2-1)\frac{\partial v}{\partial x}=g'_1.\end{cases},\\\\ &\ \ \ \ \ \ \ \ 当D=\left|\begin{array}{cccc}xf'_1-1 &f'_2\\g'_1 &2yvg'_2-1\end{array}\right|=(xf'_1-1)(2yvg'_2-1)-f'_2g'_1 \neq 0时,解方程组得\\\\ &\ \ \ \ \ \ \ \ \frac{\partial u}{\partial x}=\frac{\left|\begin{array}{cccc}-uf'_1 &f'_2\\g'_1 &2yvg'_2-1\end{array}\right|}{D}=\frac{-uf'_1(2yvg'_2-1)-f'_2g'_1}{(xf'_1-1)(2yvg'_2-1)-f'_2g'_1},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial v}{\partial x}=\frac{\left|\begin{array}{cccc}xf'_1-1 &-uf'_1\\g'_1 &g'_1\end{array}\right|}{D}=\frac{g'_1(xf'_1+uf'_1-1)}{(xf'_1-1)(2yvg'_2-1)-f'_2g'_1}.\\\\ &\ \ (4)\ 方程组确定的两个二元隐函数u=u(x, \ y),v=v(x, \ y)是已知函数的反函数,\\\\ &\ \ \ \ \ \ \ \ 令F(x, \ y, \ u, \ v)=x-e^u-usin\ v,G(x, \ y, \ u, \ v)=y-e^u+ucos\ v,\\\\ &\ \ \ \ \ \ \ \ 则F_x=1,F_y=0,F_u=-e^u-sin\ v,F_v=-ucos\ v,G_x=0,G_y=1,G_u=-e^u+cos\ v,G_v=-usin\ v,\\\\ &\ \ \ \ \ \ \ \ 当J=\frac{\partial(F, \ G)}{\partial(u, \ v)}=\left|\begin{array}{cccc}-e^u-sin\ v &-ucos\ v\\-e^u+cos\ v &-usin\ v\end{array}\right|=ue^u(sin\ v-cos\ v)+u \neq 0时,由隐函数求导公式得\\\\ &\ \ \ \ \ \ \ \ \frac{\partial u}{\partial x}=-\frac{\frac{\partial(F, \ G)}{\partial(x, \ v)}}{J}=-\frac{\left|\begin{array}{cccc}1 &-ucos\ v\\0 &-usin\ v\end{array}\right|}{J}=\frac{sin\ v}{e^u(sin\ v-cos\ v)+1},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial u}{\partial y}=-\frac{\frac{\partial(F, \ G)}{\partial(y, \ v)}}{J}=-\frac{\left|\begin{array}{cccc}0 &-ucos\ v\\1 &-usin\ v\end{array}\right|}{J}=\frac{-cos\ v}{e^u(sin\ v-cos\ v)+1},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial v}{\partial x}=-\frac{\frac{\partial(F, \ G)}{\partial(u, \ x)}}{J}=-\frac{\left|\begin{array}{cccc}-e^u-sin\ v &1\\-e^u+cos\ v &0\end{array}\right|}{J}=\frac{cos\ v-e^u}{u[e^u(sin\ v-cos\ v)+1]},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial v}{\partial y}=-\frac{\frac{\partial(F, \ G)}{\partial(u, \ y)}}{J}=-\frac{\left|\begin{array}{cccc}-e^u-sin\ v &0\\-e^u+cos\ v &1\end{array}\right|}{J}=\frac{sin\ v+e^u}{u[e^u(sin\ v-cos\ v)+1]}. & \end{aligned}  (1) 对两方程两端对x求导,得dxdz=2x+2ydxdy2x+4ydxdy+6zdxdz=0.,整理得2ydxdydxdz=2x2ydxdy+3zdxdz=x.        D=2y2y13z=6yz+2y=0时,解方程组得dxdy=D2xx13z=6yz+2y6xzx=2y(3z+1)x(6z+1)        dxdz=D2y2y2xx=6yz+2y2xy=3z+1x.  (2) 方程组确定两个一元隐函数:x=x(z)y=y(z),对方程两端对z求导,整理得dzdx+dzdy=12xdzdx+2ydzdy=2z.        D=12x12y=2(yx)=0时,解方程组得dzdx=D12z12y=2(yx)2y+2z=xyyz        dzdy=D12x12z=2(yx)2z+2x=xyzx.  (3) 方程组确定两个二元隐函数:u=u(x, y)v=v(x, y),分别对方程两端对x求偏导数,        xu=f1(u+xxu)+f2xvxv=g1(xu1)+2g2yvxv.,整理得(xf11)xu+f2xv=uf1g1xu+(2yvg21)xv=g1.        D=xf11g1f22yvg21=(xf11)(2yvg21)f2g1=0时,解方程组得        xu=Duf1g1f22yvg21=(xf11)(2yvg21)f2g1uf1(2yvg21)f2g1        xv=Dxf11g1uf1g1=(xf11)(2yvg21)f2g1g1(xf1+uf11).  (4) 方程组确定的两个二元隐函数u=u(x, y)v=v(x, y)是已知函数的反函数,        F(x, y, u, v)=xeuusin vG(x, y, u, v)=yeu+ucos v        Fx=1Fy=0Fu=eusin vFv=ucos vGx=0Gy=1Gu=eu+cos vGv=usin v        J=(u, v)(F, G)=eusin veu+cos vucos vusin v=ueu(sin vcos v)+u=0时,由隐函数求导公式得        xu=J(x, v)(F, G)=J10ucos vusin v=eu(sin vcos v)+1sin v        yu=J(y, v)(F, G)=J01ucos vusin v=eu(sin vcos v)+1cos v        xv=J(u, x)(F, G)=Jeusin veu+cos v10=u[eu(sin vcos v)+1]cos veu        yv=J(u, y)(F, G)=Jeusin veu+cos v01=u[eu(sin vcos v)+1]sin v+eu.


11. 设y=f(x, t),而t=t(x, y)是由方程F(x, y, t)=0所确定的函数,其中f,F都具有一阶连续偏导数,      试证明dydx=∂f∂x∂F∂t−∂f∂t∂F∂x∂f∂t∂F∂y+∂F∂t.\begin{aligned}&11. \ 设y=f(x, \ t),而t=t(x, \ y)是由方程F(x, \ y, \ t)=0所确定的函数,其中f,F都具有一阶连续偏导数,\\\\&\ \ \ \ \ \ 试证明\frac{dy}{dx}=\frac{\frac{\partial f}{\partial x}\frac{\partial F}{\partial t}-\frac{\partial f}{\partial t}\frac{\partial F}{\partial x}}{\frac{\partial f}{\partial t}\frac{\partial F}{\partial y}+\frac{\partial F}{\partial t}}.&\end{aligned}11. y=f(x, t),而t=t(x, y)是由方程F(x, y, t)=0所确定的函数,其中fF都具有一阶连续偏导数,      试证明dxdy=tfyF+tFxftFtfxF.
解:

  由方程组{y=f(x, t),F(x, y, t)=0可确定两个一元隐函数y=y(x),t=t(x),分别对两个方程两端对x求导,  得{dydx=∂f∂x+∂f∂t⋅dtdx,∂F∂x+∂F∂y⋅dydx+∂F∂t⋅dtdx=0.,整理得{dydx−∂f∂t⋅dtdx=∂f∂x,∂F∂y⋅dydx+∂F∂t⋅dtdx=−∂F∂x.,  当D=∣1−∂f∂t∂F∂y∂F∂t∣=∂F∂t+∂f∂t⋅∂F∂y≠0时,解方程组得  dydx=∣∂f∂x−∂f∂t−∂F∂x∂F∂t∣D=∂f∂x⋅∂F∂t−∂f∂t⋅∂F∂x∂F∂t+∂f∂t⋅∂F∂y\begin{aligned} &\ \ 由方程组\begin{cases}y=f(x, \ t),\\\\F(x, \ y, \ t)=0\end{cases}可确定两个一元隐函数y=y(x),t=t(x),分别对两个方程两端对x求导,\\\\ &\ \ 得\begin{cases}\frac{dy}{dx}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial t}\cdot \frac{dt}{dx},\\\\\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}\cdot \frac{dy}{dx}+\frac{\partial F}{\partial t}\cdot \frac{dt}{dx}=0.\end{cases},整理得\begin{cases}\frac{dy}{dx}-\frac{\partial f}{\partial t}\cdot \frac{dt}{dx}=\frac{\partial f}{\partial x},\\\\\frac{\partial F}{\partial y}\cdot \frac{dy}{dx}+\frac{\partial F}{\partial t}\cdot \frac{dt}{dx}=-\frac{\partial F}{\partial x}.\end{cases},\\\\ &\ \ 当D=\left|\begin{array}{cccc}1 &-\frac{\partial f}{\partial t}\\ \\\frac{\partial F}{\partial y} &\frac{\partial F}{\partial t}\end{array}\right|=\frac{\partial F}{\partial t}+\frac{\partial f}{\partial t}\cdot \frac{\partial F}{\partial y} \neq 0时,解方程组得\\\\ &\ \ \frac{dy}{dx}=\frac{\left|\begin{array}{cccc}\frac{\partial f}{\partial x} &-\frac{\partial f}{\partial t}\\ \\-\frac{\partial F}{\partial x} &\frac{\partial F}{\partial t}\end{array}\right|}{D}=\frac{\frac{\partial f}{\partial x}\cdot \frac{\partial F}{\partial t}-\frac{\partial f}{\partial t}\cdot \frac{\partial F}{\partial x}}{\frac{\partial F}{\partial t}+\frac{\partial f}{\partial t}\cdot \frac{\partial F}{\partial y}} & \end{aligned}  由方程组y=f(x, t)F(x, y, t)=0可确定两个一元隐函数y=y(x)t=t(x),分别对两个方程两端对x求导,  dxdy=xf+tfdxdtxF+yFdxdy+tFdxdt=0.,整理得dxdytfdxdt=xfyFdxdy+tFdxdt=xF.  D=1yFtftF=tF+tfyF=0时,解方程组得  dxdy=DxfxFtftF=tF+tfyFxftFtfxF

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值