高等数学(第七版)同济大学 习题12-7 个人解答

高等数学(第七版)同济大学 习题12-7

 

1. 下列周期函数f(x)的周期为2π,试将f(x)展开成傅里叶级数,如果f(x)在[−π, π)上的表达式为:\begin{aligned}&1. \ 下列周期函数f(x)的周期为2\pi,试将f(x)展开成傅里叶级数,如果f(x)在[-\pi, \ \pi)上的表达式为:&\end{aligned}1. 下列周期函数f(x)的周期为2π,试将f(x)展开成傅里叶级数,如果f(x)[π, π)上的表达式为:

  (1)  f(x)=3x2+1 (−π≤x<π);                     (2)  f(x)=e2x (−π≤x<π);  (3)  f(x)={bx,−π≤x<0,ax,0≤x<π (a,b为常数,且a>b>0).\begin{aligned} &\ \ (1)\ \ f(x)=3x^2+1\ (-\pi \le x \lt \pi);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ f(x)=e^{2x}\ (-\pi \le x \lt \pi);\\\\ &\ \ (3)\ \ f(x)=\begin{cases}bx,-\pi \le x \lt 0,\\\\ax,0 \le x \lt \pi\ (a,b为常数,且a \gt b \gt 0).\end{cases} & \end{aligned}  (1)  f(x)=3x2+1 (πx<π)                     (2)  f(x)=e2x (πx<π)  (3)  f(x)=bxπx<0ax0x<π (ab为常数,且a>b>0).

解:

  (1) a0=1π∫−ππ(3x2+1)dx=2(π2+1),        an=1π∫−ππ(3x2+1)cos nxdx−1π[1n(3x2+1)sin nx∣−ππ−1n∫−ππ6xsin nxdx]=        6n2π(xcos nx∣−ππ−∫−ππcos nxdx)=12n2(−1)n−6n3πsin nx∣−ππ=(−1)n12n2 (n=1,2,⋅⋅⋅),        因为(3x2+1)sin nx是奇函数,所以bn=1π∫−ππ(3x2+1)sin nxdx=0,        因为f(x)满足收敛定理的条件且在(−∞, +∞)内连续,        所以f(x)=π2+1+12∑n=1∞(−1)nn2cos nx,x∈(−∞, +∞).  (2) a0=1π∫−ππe2xdx=e2π−e−2π2π,        an=1π∫−ππe2xcos nxdx=12π(e2xcos nx∣−ππ+∫−ππe2xnsin nxdx)=        (−1)n(e2π−e−2π)2π+n4π(e2xsin nx∣−ππ−∫−ππe2xncos nxdx)=(−1)n(e2π−e−2π)2π−n24an,        所以an=2(−1)n(e2π−e−2π)(n2+4)π (n=1,2,⋅⋅⋅),分部积分法得        bn=1π∫−ππe2xsin nxdx=−n2an=−n(−1)n(e2π−e−2π)(n2+4)π (n=1,2,⋅⋅⋅),        f(x)满足收敛定理的条件,在x=(2k+1)π (k∈Z)处不连续,        所以f(x)=e2π−e−2ππ[14+∑n=1∞(−1)nn2+4(2cos nx−nsin nx)],x≠(2k+1)π,k∈Z.  (3) a0=1π(∫−π0bxdx+∫0πaxdx)=π2(a−b),an=1π(∫−π0bxcos nxdx+∫0πaxcos nxdx),        上式右端第一个积分中令x=−t,∫−π0bxcos nxdx=∫0π(−btcos nt)dt=∫0π(−bxcos nx)dx,        所以an=1π∫0π(a−b)xcos nxdx=a−bnπ(xsin nx∣0π−∫0πsin nxdx)=a−bn2π(cos nπ−1)=        b−an2π[1−(−1)n] (n=1,2,⋅⋅⋅),同理可得,        bn=1π[∫−π0bxsin nxdx+∫0πaxsin nxdx]=1π∫0π(a+b)xsin nxdx=a+bnπ(−xcos nx∣0π+∫0πcos nxdx)=        a+bnπ[(−1)n+1π+1nsin nx∣0π]=a+bn(−1)n+1 (n=1,2,⋅⋅⋅),f(x)满足收敛定理的条件,        在x=(2k+1)π (k∈Z)处不连续,        所以f(x)=π4(a−b)+∑n=1∞{[1−(−1)n](b−a)n2πcos nx+(−1)n−1(a−b)nsin nx},x≠(2k+1)π,k∈Z.\begin{aligned} &\ \ (1)\ a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}(3x^2+1)dx=2(\pi^2+1),\\\\ &\ \ \ \ \ \ \ \ a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}(3x^2+1)cos\ nxdx-\frac{1}{\pi}\left[\frac{1}{n}(3x^2+1)sin\ nx\bigg|_{-\pi}^{\pi}-\frac{1}{n}\int_{-\pi}^{\pi}6xsin\ nxdx\right]=\\\\ &\ \ \ \ \ \ \ \ \frac{6}{n^2\pi}\left(xcos\ nx\bigg|_{-\pi}^{\pi}-\int_{-\pi}^{\pi}cos\ nxdx\right)=\frac{12}{n^2}(-1)^n-\frac{6}{n^3\pi}sin\ nx\bigg|_{-\pi}^{\pi}=\frac{(-1)^n12}{n^2}\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ 因为(3x^2+1)sin\ nx是奇函数,所以b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}(3x^2+1)sin\ nxdx=0,\\\\ &\ \ \ \ \ \ \ \ 因为f(x)满足收敛定理的条件且在(-\infty, \ +\infty)内连续,\\\\ &\ \ \ \ \ \ \ \ 所以f(x)=\pi^2+1+12\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}cos\ nx,x \in (-\infty, \ +\infty).\\\\ &\ \ (2)\ a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}e^{2x}dx=\frac{e^{2\pi}-e^{-2\pi}}{2\pi},\\\\ &\ \ \ \ \ \ \ \ a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}e^{2x}cos\ nxdx=\frac{1}{2\pi}\left(e^{2x}cos\ nx\bigg|_{-\pi}^{\pi}+\int_{-\pi}^{\pi}e^{2x}nsin\ nxdx\right)=\\\\ &\ \ \ \ \ \ \ \ \frac{(-1)^n(e^{2\pi}-e^{-2\pi})}{2\pi}+\frac{n}{4\pi}\left(e^{2x}sin\ nx\bigg|_{-\pi}^{\pi}-\int_{-\pi}^{\pi}e^{2x}ncos\ nxdx\right)=\frac{(-1)^n(e^{2\pi}-e^{-2\pi})}{2\pi}-\frac{n^2}{4}a_n,\\\\ &\ \ \ \ \ \ \ \ 所以a_n=\frac{2(-1)^n(e^{2\pi}-e^{-2\pi})}{(n^2+4)\pi}\ (n=1,2,\cdot\cdot\cdot),分部积分法得\\\\ &\ \ \ \ \ \ \ \ b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}e^{2x}sin\ nxdx=-\frac{n}{2}a_n=-\frac{n(-1)^n(e^{2\pi}-e^{-2\pi})}{(n^2+4)\pi}\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ f(x)满足收敛定理的条件,在x=(2k+1)\pi\ (k \in Z)处不连续,\\\\ &\ \ \ \ \ \ \ \ 所以f(x)=\frac{e^{2\pi}-e^{-2\pi}}{\pi}\left[\frac{1}{4}+\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2+4}(2cos\ nx-nsin\ nx)\right],x \neq (2k+1)\pi,k \in Z.\\\\ &\ \ (3)\ a_0=\frac{1}{\pi}\left(\int_{-\pi}^{0}bxdx+\int_{0}^{\pi}axdx\right)=\frac{\pi}{2}(a-b),a_n=\frac{1}{\pi}\left(\int_{-\pi}^{0}bxcos\ nxdx+\int_{0}^{\pi}axcos\ nxdx\right),\\\\ &\ \ \ \ \ \ \ \ 上式右端第一个积分中令x=-t,\int_{-\pi}^{0}bxcos\ nxdx=\int_{0}^{\pi}(-btcos\ nt)dt=\int_{0}^{\pi}(-bxcos\ nx)dx,\\\\ &\ \ \ \ \ \ \ \ 所以a_n=\frac{1}{\pi}\int_{0}^{\pi}(a-b)xcos\ nxdx=\frac{a-b}{n\pi}\left(xsin\ nx\bigg|_{0}^{\pi}-\int_{0}^{\pi}sin\ nxdx\right)=\frac{a-b}{n^2\pi}(cos\ n\pi-1)=\\\\ &\ \ \ \ \ \ \ \ \frac{b-a}{n^2\pi}[1-(-1)^n]\ (n=1,2,\cdot\cdot\cdot),同理可得,\\\\ &\ \ \ \ \ \ \ \ b_n=\frac{1}{\pi}\left[\int_{-\pi}^{0}bxsin\ nxdx+\int_{0}^{\pi}axsin\ nxdx\right]=\frac{1}{\pi}\int_{0}^{\pi}(a+b)xsin\ nxdx=\frac{a+b}{n\pi}\left(-xcos\ nx\bigg|_{0}^{\pi}+\int_{0}^{\pi}cos\ nxdx\right)=\\\\ &\ \ \ \ \ \ \ \ \frac{a+b}{n\pi}\left[(-1)^{n+1}\pi+\frac{1}{n}sin\ nx\bigg|_{0}^{\pi}\right]=\frac{a+b}{n}(-1)^{n+1}\ (n=1,2,\cdot\cdot\cdot),f(x)满足收敛定理的条件,\\\\ &\ \ \ \ \ \ \ \ 在x=(2k+1)\pi\ (k \in Z)处不连续,\\\\ &\ \ \ \ \ \ \ \ 所以f(x)=\frac{\pi}{4}(a-b)+\sum_{n=1}^{\infty}\left\{\frac{[1-(-1)^n](b-a)}{n^2\pi}cos\ nx+\frac{(-1)^{n-1}(a-b)}{n}sin\ nx\right\},x \neq (2k+1)\pi,k \in Z. & \end{aligned}  (1) a0=π1ππ(3x2+1)dx=2(π2+1)        an=π1ππ(3x2+1)cos nxdxπ1[n1(3x2+1)sin nxππn1ππ6xsin nxdx]=        n2π6(xcos nxππππcos nxdx)=n212(1)nn3π6sin nxππ=n2(1)n12 (n=12)        因为(3x2+1)sin nx是奇函数,所以bn=π1ππ(3x2+1)sin nxdx=0        因为f(x)满足收敛定理的条件且在(, +)内连续,        所以f(x)=π2+1+12n=1n2(1)ncos nxx(, +).  (2) a0=π1ππe2xdx=2πe2πe2π        an=π1ππe2xcos nxdx=2π1(e2xcos nxππ+ππe2xnsin nxdx)=        2π(1)n(e2πe2π)+4πn(e2xsin nxππππe2xncos nxdx)=2π(1)n(e2πe2π)4n2an        所以an=(n2+4)π2(1)n(e2πe2π) (n=12),分部积分法得        bn=π1ππe2xsin nxdx=2nan=(n2+4)πn(1)n(e2πe2π) (n=12)        f(x)满足收敛定理的条件,在x=(2k+1)π (kZ)处不连续,        所以f(x)=πe2πe2π[41+n=1n2+4(1)n(2cos nxnsin nx)]x=(2k+1)πkZ.  (3) a0=π1(π0bxdx+0πaxdx)=2π(ab)an=π1(π0bxcos nxdx+0πaxcos nxdx)        上式右端第一个积分中令x=tπ0bxcos nxdx=0π(btcos nt)dt=0π(bxcos nx)dx        所以an=π10π(ab)xcos nxdx=ab(xsin nx0π0πsin nxdx)=n2πab(cos 1)=        n2πba[1(1)n] (n=12),同理可得,        bn=π1[π0bxsin nxdx+0πaxsin nxdx]=π10π(a+b)xsin nxdx=a+b(xcos nx0π+0πcos nxdx)=        a+b[(1)n+1π+n1sin nx0π]=na+b(1)n+1 (n=12)f(x)满足收敛定理的条件,        x=(2k+1)π (kZ)处不连续,        所以f(x)=4π(ab)+n=1{n2π[1(1)n](ba)cos nx+n(1)n1(ab)sin nx}x=(2k+1)πkZ.


2. 将下列函数f(x)展开成傅里叶级数:\begin{aligned}&2. \ 将下列函数f(x)展开成傅里叶级数:&\end{aligned}2. 将下列函数f(x)展开成傅里叶级数:

  (1)  f(x)=2sin x3 (−π≤x≤π);                     (2)  f(x)={ex,−π≤x<0,1,0≤x≤π.\begin{aligned} &\ \ (1)\ \ f(x)=2sin\ \frac{x}{3}\ (-\pi \le x \le \pi);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ f(x)=\begin{cases}e^x,-\pi \le x \lt 0,\\\\1,0 \le x \le \pi.\end{cases} & \end{aligned}  (1)  f(x)=2sin 3x (πxπ)                     (2)  f(x)=exπx<010xπ.

解:

  (1) 设φ(x)是f(x)经周期延拓而得的函数,φ(x)在(−π, π)内连续,x=±π是φ(x)的间断点,        因φ(x)满足收敛定理的条件,所以在(−π, π)内,其傅里叶级数收敛于f(x),因为2sin x3是奇函数,        所以an=0 (n=0,1,2,⋅⋅⋅),bn=2π∫0π2sin x3sin nxdx=2π∫0π[cos(13−n)x−cos(13+n)x]dx=        2π[sin(n−13)πn−13−sin(n+13)πn+13]=6π[−cos nπ⋅323n−1−cos nπ⋅323n+1]=        (−1)n+1⋅183π⋅n9n2−1 (n=1,2,⋅⋅⋅),所以f(x)=183π∑n=1∞(−1)n+1n9n2−1sin nx,x∈(−π, π).  (2) 设φ(x)是f(x)经周期延拓而得的函数,在(−π, π)内连续,x=±π是φ(x)的间断点,        因为φ(x)满足收敛定理的条件,所以在(−π, π)内,其傅里叶级数收敛于f(x),        a0=1π(∫−π0exdx+∫0πdx)=1+π−e−ππ,        an=1π(∫−π0excos nxdx+∫0πcos nxdx)=1−(−1)ne−ππ(1+n2) (n=1,2,⋅⋅⋅),        bn=1π(∫−π0exsin nxdx+∫0πsin nxdx)=1π{−n[1−(−1)ne−π]1+n2+1−(−1)nn} (n=1,2,⋅⋅⋅),所以        f(x)=1+π−e−π2π+1π∑n=1∞{1−(−1)ne−π1+n2cos nx+[−n+(−1)nne−π1+n2+1−(−1)nn]sin nx},x∈(−π, π)\begin{aligned} &\ \ (1)\ 设\varphi(x)是f(x)经周期延拓而得的函数,\varphi(x)在(-\pi, \ \pi)内连续,x=\pm\pi是\varphi(x)的间断点,\\\\ &\ \ \ \ \ \ \ \ 因\varphi(x)满足收敛定理的条件,所以在(-\pi, \ \pi)内,其傅里叶级数收敛于f(x),因为2sin\ \frac{x}{3}是奇函数,\\\\ &\ \ \ \ \ \ \ \ 所以a_n=0\ (n=0,1,2,\cdot\cdot\cdot),b_n=\frac{2}{\pi}\int_{0}^{\pi}2sin\ \frac{x}{3}sin\ nxdx=\frac{2}{\pi}\int_{0}^{\pi}\left[cos\left(\frac{1}{3}-n\right)x-cos\left(\frac{1}{3}+n\right)x\right]dx=\\\\ &\ \ \ \ \ \ \ \ \frac{2}{\pi}\left[\frac{sin\left(n-\frac{1}{3}\right)\pi}{n-\frac{1}{3}}-\frac{sin\left(n+\frac{1}{3}\right)\pi}{n+\frac{1}{3}}\right]=\frac{6}{\pi}\left[\frac{-cos\ n\pi\cdot\frac{\sqrt{3}}{2}}{3n-1}-\frac{cos\ n\pi\cdot\frac{\sqrt{3}}{2}}{3n+1}\right]=\\\\ &\ \ \ \ \ \ \ \ (-1)^{n+1}\cdot\frac{18\sqrt{3}}{\pi}\cdot\frac{n}{9n^2-1}\ (n=1,2,\cdot\cdot\cdot),所以f(x)=\frac{18\sqrt{3}}{\pi}\sum_{n=1}^{\infty}(-1)^{n+1}\frac{n}{9n^2-1}sin\ nx,x \in (-\pi, \ \pi).\\\\ &\ \ (2)\ 设\varphi(x)是f(x)经周期延拓而得的函数,在(-\pi, \ \pi)内连续,x=\pm\pi是\varphi(x)的间断点,\\\\ &\ \ \ \ \ \ \ \ 因为\varphi(x)满足收敛定理的条件,所以在(-\pi, \ \pi)内,其傅里叶级数收敛于f(x),\\\\ &\ \ \ \ \ \ \ \ a_0=\frac{1}{\pi}\left(\int_{-\pi}^{0}e^xdx+\int_{0}^{\pi}dx\right)=\frac{1+\pi-e^{-\pi}}{\pi},\\\\ &\ \ \ \ \ \ \ \ a_n=\frac{1}{\pi}\left(\int_{-\pi}^{0}e^xcos\ nxdx+\int_{0}^{\pi}cos\ nxdx\right)=\frac{1-(-1)^ne^{-\pi}}{\pi(1+n^2)}\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ b_n=\frac{1}{\pi}\left(\int_{-\pi}^{0}e^xsin\ nxdx+\int_{0}^{\pi}sin\ nxdx\right)=\frac{1}{\pi}\left\{\frac{-n[1-(-1)^ne^{-\pi}]}{1+n^2}+\frac{1-(-1)^n}{n}\right\}\ (n=1,2,\cdot\cdot\cdot),所以\\\\ &\ \ \ \ \ \ \ \ f(x)=\frac{1+\pi-e^{-\pi}}{2\pi}+\frac{1}{\pi}\sum_{n=1}^{\infty}\left\{\frac{1-(-1)^ne^{-\pi}}{1+n^2}cos\ nx+\left[\frac{-n+(-1)^nne^{-\pi}}{1+n^2}+\frac{1-(-1)^n}{n}\right]sin\ nx\right\},x \in (-\pi, \ \pi) & \end{aligned}  (1) φ(x)f(x)经周期延拓而得的函数,φ(x)(π, π)内连续,x=±πφ(x)的间断点,        φ(x)满足收敛定理的条件,所以在(π, π)内,其傅里叶级数收敛于f(x),因为2sin 3x是奇函数,        所以an=0 (n=012)bn=π20π2sin 3xsin nxdx=π20π[cos(31n)xcos(31+n)x]dx=        π2[n31sin(n31)πn+31sin(n+31)π]=π6[3n1cos 233n+1cos 23]=        (1)n+1π1839n21n (n=12),所以f(x)=π183n=1(1)n+19n21nsin nxx(π, π).  (2) φ(x)f(x)经周期延拓而得的函数,在(π, π)内连续,x=±πφ(x)的间断点,        因为φ(x)满足收敛定理的条件,所以在(π, π)内,其傅里叶级数收敛于f(x)        a0=π1(π0exdx+0πdx)=π1+πeπ        an=π1(π0excos nxdx+0πcos nxdx)=π(1+n2)1(1)neπ (n=12)        bn=π1(π0exsin nxdx+0πsin nxdx)=π1{1+n2n[1(1)neπ]+n1(1)n} (n=12),所以        f(x)=2π1+πeπ+π1n=1{1+n21(1)neπcos nx+[1+n2n+(1)nneπ+n1(1)n]sin nx}x(π, π)


3. 将函数f(x)=cos x2 (−π≤x≤π)展开成傅里叶级数.\begin{aligned}&3. \ 将函数f(x)=cos\ \frac{x}{2}\ (-\pi \le x \le \pi)展开成傅里叶级数.&\end{aligned}3. 将函数f(x)=cos 2x (πxπ)展开成傅里叶级数.
解:

  f(x)=cos x2是偶函数,所以bn=0 (n=1,2,⋅⋅⋅),  an=2π∫0πcos x2cos nxdx=1π∫0π[cos(n−12)x+cos(n+12)x]dx=1π[sin(n−12)πn−12+sin(n+12)πn+12]=  2π(−cos nπ2n−1+cos nπ2n+1)=(−1)n+12π(12n−1−12n+1)=(−1)n+14π(4n2−1) (n=0,1,2,⋅⋅⋅),  因为f(x)满足收敛定理的条件,且在[−π, π]上连续,所以f(x)=2π+4π∑n=1∞(−1)n+114n2−1cos nx,x∈[−π, π].\begin{aligned} &\ \ f(x)=cos\ \frac{x}{2}是偶函数,所以b_n=0\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ a_n=\frac{2}{\pi}\int_{0}^{\pi}cos\ \frac{x}{2}cos\ nxdx=\frac{1}{\pi}\int_{0}^{\pi}\left[cos\left(n-\frac{1}{2}\right)x+cos\left(n+\frac{1}{2}\right)x\right]dx=\frac{1}{\pi}\left[\frac{sin\left(n-\frac{1}{2}\right)\pi}{n-\frac{1}{2}}+\frac{sin\left(n+\frac{1}{2}\right)\pi}{n+\frac{1}{2}}\right]=\\\\ &\ \ \frac{2}{\pi}\left(\frac{-cos\ n\pi}{2n-1}+\frac{cos\ n\pi}{2n+1}\right)=(-1)^{n+1}\frac{2}{\pi}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)=(-1)^{n+1}\frac{4}{\pi(4n^2-1)}\ (n=0,1,2,\cdot\cdot\cdot),\\\\ &\ \ 因为f(x)满足收敛定理的条件,且在[-\pi, \ \pi]上连续,所以f(x)=\frac{2}{\pi}+\frac{4}{\pi}\sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{4n^2-1}cos\ nx,x \in [-\pi, \ \pi]. & \end{aligned}  f(x)=cos 2x是偶函数,所以bn=0 (n=12)  an=π20πcos 2xcos nxdx=π10π[cos(n21)x+cos(n+21)x]dx=π1[n21sin(n21)π+n+21sin(n+21)π]=  π2(2n1cos +2n+1cos )=(1)n+1π2(2n112n+11)=(1)n+1π(4n21)4 (n=012)  因为f(x)满足收敛定理的条件,且在[π, π]上连续,所以f(x)=π2+π4n=1(1)n+14n211cos nxx[π, π].


4. 设f(x)是周期为2π的周期函数,它在[−π, π)上的表达式为    f(x)={−π2,−π≤x< −π2,x,−π2≤x<π2,π2,π2≤x<π.    将f(x)展开成傅里叶级数.\begin{aligned}&4. \ 设f(x)是周期为2\pi的周期函数,它在[-\pi, \ \pi)上的表达式为\\\\&\ \ \ \ f(x)=\begin{cases}-\frac{\pi}{2},-\pi \le x \lt \ -\frac{\pi}{2},\\\\x,-\frac{\pi}{2} \le x \lt \frac{\pi}{2},\\\\\frac{\pi}{2},\frac{\pi}{2} \le x \lt \pi.\end{cases}\\\\&\ \ \ \ 将f(x)展开成傅里叶级数.&\end{aligned}4. f(x)是周期为2π的周期函数,它在[π, π)上的表达式为    f(x)=2ππx< 2πx2πx<2π2π2πx<π.    f(x)展开成傅里叶级数.
解:

  f(x)是奇函数,所以an=0 (n=0,1,2,⋅⋅⋅),  bn=2π∫0πf(x)sin nxdx=2π(∫0π2xsin nxdx+∫π2ππ2sin nxdx)=  2π(−xcos nxn∣0π2+1n∫0π2cos nxdx)+∫π2πsin nxdx=−cosnπ2n+2sinnπ2πn2+cosnπ2−cos nπn=  2n2πsinnπ2+(−1)n+1n (n=1,2,⋅⋅⋅),因为f(x)满足收敛定理的条件,在x=(2k+1)π (k∈Z)处间断,  所以f(x)=∑n=1∞[(−1)n+1n+2n2πsinnπ2]sin nx,x≠(2k+1)π (k∈Z).\begin{aligned} &\ \ f(x)是奇函数,所以a_n=0\ (n=0,1,2,\cdot\cdot\cdot),\\\\ &\ \ b_n=\frac{2}{\pi}\int_{0}^{\pi}f(x)sin\ nxdx=\frac{2}{\pi}\left(\int_{0}^{\frac{\pi}{2}}xsin\ nxdx+\int_{\frac{\pi}{2}}^{\pi}\frac{\pi}{2}sin\ nxdx\right)=\\\\ &\ \ \frac{2}{\pi}\left(\frac{-xcos\ nx}{n}\bigg|_{0}^{\frac{\pi}{2}}+\frac{1}{n}\int_{0}^{\frac{\pi}{2}}cos\ nxdx\right)+\int_{\frac{\pi}{2}}^{\pi}sin\ nxdx=\frac{-cos\frac{n\pi}{2}}{n}+\frac{2sin\frac{n\pi}{2}}{\pi n^2}+\frac{cos\frac{n\pi}{2}-cos\ n\pi}{n}=\\\\ &\ \ \frac{2}{n^2\pi}sin\frac{n\pi}{2}+\frac{(-1)^{n+1}}{n}\ (n=1,2,\cdot\cdot\cdot),因为f(x)满足收敛定理的条件,在x=(2k+1)\pi\ (k \in Z)处间断,\\\\ &\ \ 所以f(x)=\sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1}}{n}+\frac{2}{n^2\pi}sin\frac{n\pi}{2}\right]sin\ nx,x \neq (2k+1)\pi\ (k \in Z). & \end{aligned}  f(x)是奇函数,所以an=0 (n=012)  bn=π20πf(x)sin nxdx=π2(02πxsin nxdx+2ππ2πsin nxdx)=  π2(nxcos nx02π+n102πcos nxdx)+2ππsin nxdx=ncos2+πn22sin2+ncos2cos =  n2π2sin2+n(1)n+1 (n=12),因为f(x)满足收敛定理的条件,在x=(2k+1)π (kZ)处间断,  所以f(x)=n=1[n(1)n+1+n2π2sin2]sin nxx=(2k+1)π (kZ).


5. 将函数f(x)=π−x2 (0≤x≤π)展开成正弦级数.\begin{aligned}&5. \ 将函数f(x)=\frac{\pi-x}{2}\ (0 \le x \le \pi)展开成正弦级数.&\end{aligned}5. 将函数f(x)=2πx (0xπ)展开成正弦级数.
解:

  作φ(x)={f(x),x∈(0, π],0,x=0,−f(−x),x∈(−π, 0).,φ(x)是f(x)的奇延拓,令Φ(x)是φ(x)的周期延拓,  则Φ(x)满足收敛定理的条件,在x=2kπ (k∈Z)处间断,在(0, π]上,Φ(x)≡f(x),  因为Φ(x)的傅里叶级数在(0, π]上收敛于f(x),an=0 (n=0,1,2,⋅⋅⋅),  bn=2π∫0ππ−x2sin nxdx=2π[x−π2ncos nx−12n2sin nx]0π=1n (n=1,2,⋅⋅⋅),  所以f(x)=∑n=1∞1nsin nx,x∈(0, π].\begin{aligned} &\ \ 作\varphi(x)=\begin{cases}f(x),x \in (0, \ \pi],\\\\0,x=0,\\\\-f(-x),x \in (-\pi, \ 0).\end{cases},\varphi(x)是f(x)的奇延拓,令\Phi(x)是\varphi(x)的周期延拓,\\\\ &\ \ 则\Phi(x)满足收敛定理的条件,在x=2k\pi\ (k \in Z)处间断,在(0, \ \pi]上,\Phi(x) \equiv f(x),\\\\ &\ \ 因为\Phi(x)的傅里叶级数在(0, \ \pi]上收敛于f(x),a_n=0\ (n=0,1,2,\cdot\cdot\cdot),\\\\ &\ \ b_n=\frac{2}{\pi}\int_{0}^{\pi}\frac{\pi-x}{2}sin\ nxdx=\frac{2}{\pi}\left[\frac{x-\pi}{2n}cos\ nx-\frac{1}{2n^2}sin\ nx\right]_{0}^{\pi}=\frac{1}{n}\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ 所以f(x)=\sum_{n=1}^{\infty}\frac{1}{n}sin\ nx,x \in (0, \ \pi]. & \end{aligned}  φ(x)=f(x)x(0, π]0x=0f(x)x(π, 0).φ(x)f(x)的奇延拓,令Φ(x)φ(x)的周期延拓,  Φ(x)满足收敛定理的条件,在x=2 (kZ)处间断,在(0, π]上,Φ(x)f(x)  因为Φ(x)的傅里叶级数在(0, π]上收敛于f(x)an=0 (n=012)  bn=π20π2πxsin nxdx=π2[2nxπcos nx2n21sin nx]0π=n1 (n=12)  所以f(x)=n=1n1sin nxx(0, π].


6. 将函数f(x)=2x2 (0≤x≤π)分别展开成正弦级数和余弦级数.\begin{aligned}&6. \ 将函数f(x)=2x^2\ (0 \le x \le \pi)分别展开成正弦级数和余弦级数.&\end{aligned}6. 将函数f(x)=2x2 (0xπ)分别展开成正弦级数和余弦级数.
解:

  正弦级数:令φ(x)={2x2,x∈[0, π],−2x2,x∈(−π, 0),是f(x)的奇延拓,又因Φ(x)是φ(x)的周期延拓函数,  则Φ(x)满足收敛定理的条件,在x=(2k+1)π (k∈Z)处间断,又在[0, π]上Φ(x)≡f(x),  所以其傅里叶级数在[0, π)上收敛于f(x),an=0 (n=0,1,2,⋅⋅⋅),  bn=2π∫0π2x2sin nxdx=4π[−x2ncos nx+2xn2sin nx+2n3cos nx]0π=  4π[−π2(−1)nn+(−1)n2n3−2n3] (n=1,2,⋅⋅⋅),  所以f(x)=4π∑n=1∞[(2n3−π2n)(−1)n−2n3]sin nx,x∈[0, π)  余弦级数:令φ(x)=2x2,x∈(−π, π]是f(x)的偶延拓,又因Φ(x)是φ(x)的周期延拓函数,  则Φ(x)满足收敛定理的条件且处处连续,在[0, π]上,Φ(x)≡f(x),所以其傅里叶级数在[0, π]上收敛于f(x),  bn=0 (n=1,2,⋅⋅⋅),an=2π∫0π2x2dx=43π2,an=2π∫0π2x2cos nxdx=(−1)n8n2 (n=1,2,⋅⋅⋅),  所以f(x)=23π2+8∑n=1∞(−1)nn2cos nx,x∈[0, π]\begin{aligned} &\ \ 正弦级数:令\varphi(x)=\begin{cases}2x^2,x \in [0, \ \pi],\\\\-2x^2,x \in (-\pi, \ 0)\end{cases},是f(x)的奇延拓,又因\Phi(x)是\varphi(x)的周期延拓函数,\\\\ &\ \ 则\Phi(x)满足收敛定理的条件,在x=(2k+1)\pi\ (k \in Z)处间断,又在[0, \ \pi]上\Phi(x) \equiv f(x),\\\\ &\ \ 所以其傅里叶级数在[0, \ \pi)上收敛于f(x),a_n=0\ (n=0,1,2,\cdot\cdot\cdot),\\\\ &\ \ b_n=\frac{2}{\pi}\int_{0}^{\pi}2x^2sin\ nxdx=\frac{4}{\pi}\left[\frac{-x^2}{n}cos\ nx+\frac{2x}{n^2}sin\ nx+\frac{2}{n^3}cos\ nx\right]_{0}^{\pi}=\\\\ &\ \ \frac{4}{\pi}\left[\frac{-\pi^2(-1)^n}{n}+\frac{(-1)^n2}{n^3}-\frac{2}{n^3}\right]\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ 所以f(x)=\frac{4}{\pi}\sum_{n=1}^{\infty}\left[\left(\frac{2}{n^3}-\frac{\pi^2}{n}\right)(-1)^n-\frac{2}{n^3}\right]sin\ nx,x \in [0, \ \pi)\\\\ &\ \ 余弦级数:令\varphi(x)=2x^2,x \in (-\pi, \ \pi]是f(x)的偶延拓,又因\Phi(x)是\varphi(x)的周期延拓函数,\\\\ &\ \ 则\Phi(x)满足收敛定理的条件且处处连续,在[0, \ \pi]上,\Phi(x) \equiv f(x),所以其傅里叶级数在[0, \ \pi]上收敛于f(x),\\\\ &\ \ b_n=0\ (n=1,2,\cdot\cdot\cdot),a_n=\frac{2}{\pi}\int_{0}^{\pi}2x^2dx=\frac{4}{3}\pi^2,a_n=\frac{2}{\pi}\int_{0}^{\pi}2x^2cos\ nxdx=(-1)^n\frac{8}{n^2}\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ 所以f(x)=\frac{2}{3}\pi^2+8\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}cos\ nx,x \in [0, \ \pi] & \end{aligned}  正弦级数:令φ(x)=2x2x[0, π]2x2x(π, 0),是f(x)的奇延拓,又因Φ(x)φ(x)的周期延拓函数,  Φ(x)满足收敛定理的条件,在x=(2k+1)π (kZ)处间断,又在[0, π]Φ(x)f(x)  所以其傅里叶级数在[0, π)上收敛于f(x)an=0 (n=012)  bn=π20π2x2sin nxdx=π4[nx2cos nx+n22xsin nx+n32cos nx]0π=  π4[nπ2(1)n+n3(1)n2n32] (n=12)  所以f(x)=π4n=1[(n32nπ2)(1)nn32]sin nxx[0, π)  余弦级数:令φ(x)=2x2x(π, π]f(x)的偶延拓,又因Φ(x)φ(x)的周期延拓函数,  Φ(x)满足收敛定理的条件且处处连续,在[0, π]上,Φ(x)f(x),所以其傅里叶级数在[0, π]上收敛于f(x)  bn=0 (n=12)an=π20π2x2dx=34π2an=π20π2x2cos nxdx=(1)nn28 (n=12)  所以f(x)=32π2+8n=1n2(1)ncos nxx[0, π]


7. 设周期函数f(x)的周期为2π,证明:\begin{aligned}&7. \ 设周期函数f(x)的周期为2\pi,证明:&\end{aligned}7. 设周期函数f(x)的周期为2π,证明:

  (1)  若f(x−π)=−f(x),则f(x)的傅里叶系数a0=0,a2k=0,b2k=0 (k=1,2,⋅⋅⋅);  (2)  若f(x−π)=f(x),则f(x)的傅里叶系数a2k+1=0,b2k+1=0 (k=0,1,2,⋅⋅⋅).\begin{aligned} &\ \ (1)\ \ 若f(x-\pi)=-f(x),则f(x)的傅里叶系数a_0=0,a_{2k}=0,b_{2k}=0\ (k=1,2,\cdot\cdot\cdot);\\\\ &\ \ (2)\ \ 若f(x-\pi)=f(x),则f(x)的傅里叶系数a_{2k+1}=0,b_{2k+1}=0\ (k=0,1,2,\cdot\cdot\cdot). & \end{aligned}  (1)  f(xπ)=f(x),则f(x)的傅里叶系数a0=0a2k=0b2k=0 (k=12)  (2)  f(xπ)=f(x),则f(x)的傅里叶系数a2k+1=0b2k+1=0 (k=012).

解:

  (1) a0=1π[∫−π0f(x)dx+∫0πf(x)dx]=1π[∫−π0f(x)dx+∫0π[−f(x−π)]dx],上式第二个积分中令x−π=u,        则a0=1π[∫−π0f(x)dx−∫−π0f(u)du]=0,同理可得,        an=1π[∫−π0f(x)cos nxdx+∫0πf(x)cos nxdx]=1π[∫−π0f(x)cos nxdx+∫0π[−f(x−π)]cos nxdx]=        1π[∫−π0f(x)cos nxdx−∫−π0f(u)cos(nπ+nu)du],bn=1π[∫−π0f(x)sin nxdx−∫−π0f(u)sin(nπ+nu)du],        当n=2k (k∈N∗)时,cos(nπ+nu)=cos nu,sin(nπ+nu)=sin nu,        则a2k=1π[∫−π0f(x)cos 2kxdx−∫−π0f(u)cos 2kudu]=0,b2k=0 (k∈N∗).  (2) an=1π[∫−π0f(x)cos nxdx+∫−π0f(u)cos(nπ+nu)du],        bn=1π[∫−π0f(x)sin nxdx+∫−π0f(u)sin(nπ+nu)du],        当n=2k+1 (k∈N)时,cos(nπ+nu)=−cos nu,sin(nπ+nu)=−sin nu,则a2k+1=0,b2k+1=0 (k∈N).\begin{aligned} &\ \ (1)\ a_0=\frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)dx+\int_{0}^{\pi}f(x)dx\right]=\frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)dx+\int_{0}^{\pi}[-f(x-\pi)]dx\right],上式第二个积分中令x-\pi=u,\\\\ &\ \ \ \ \ \ \ \ 则a_0=\frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)dx-\int_{-\pi}^{0}f(u)du\right]=0,同理可得,\\\\ &\ \ \ \ \ \ \ \ a_n=\frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)cos\ nxdx+\int_{0}^{\pi}f(x)cos\ nxdx\right]=\frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)cos\ nxdx+\int_{0}^{\pi}[-f(x-\pi)]cos\ nxdx\right]=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)cos\ nxdx-\int_{-\pi}^{0}f(u)cos(n\pi+nu)du\right],b_n=\frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)sin\ nxdx-\int_{-\pi}^{0}f(u)sin(n\pi+nu)du\right],\\\\ &\ \ \ \ \ \ \ \ 当n=2k\ (k \in N^*)时,cos(n\pi+nu)=cos\ nu,sin(n\pi+nu)=sin\ nu,\\\\ &\ \ \ \ \ \ \ \ 则a_{2k}=\frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)cos\ 2kxdx-\int_{-\pi}^{0}f(u)cos\ 2kudu\right]=0,b_{2k}=0\ (k \in N^*).\\\\ &\ \ (2)\ a_n=\frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)cos\ nxdx+\int_{-\pi}^{0}f(u)cos(n\pi+nu)du\right],\\\\ &\ \ \ \ \ \ \ \ b_n=\frac{1}{\pi}\left[\int_{-\pi}^{0}f(x)sin\ nxdx+\int_{-\pi}^{0}f(u)sin(n\pi+nu)du\right],\\\\ &\ \ \ \ \ \ \ \ 当n=2k+1\ (k \in N)时,cos(n\pi+nu)=-cos\ nu,sin(n\pi+nu)=-sin\ nu,则a_{2k+1}=0,b_{2k+1}=0\ (k \in N). & \end{aligned}  (1) a0=π1[π0f(x)dx+0πf(x)dx]=π1[π0f(x)dx+0π[f(xπ)]dx],上式第二个积分中令xπ=u        a0=π1[π0f(x)dxπ0f(u)du]=0,同理可得,        an=π1[π0f(x)cos nxdx+0πf(x)cos nxdx]=π1[π0f(x)cos nxdx+0π[f(xπ)]cos nxdx]=        π1[π0f(x)cos nxdxπ0f(u)cos(+nu)du]bn=π1[π0f(x)sin nxdxπ0f(u)sin(+nu)du]        n=2k (kN)时,cos(+nu)=cos nusin(+nu)=sin nu        a2k=π1[π0f(x)cos 2kxdxπ0f(u)cos 2kudu]=0b2k=0 (kN).  (2) an=π1[π0f(x)cos nxdx+π0f(u)cos(+nu)du]        bn=π1[π0f(x)sin nxdx+π0f(u)sin(+nu)du]        n=2k+1 (kN)时,cos(+nu)=cos nusin(+nu)=sin nu,则a2k+1=0b2k+1=0 (kN).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值