带你入门多目标跟踪(二)SORT&DeepSORT

本文深入解析经典多目标跟踪算法SORT和DeepSORT。SORT采用在线跟踪,结合卡尔曼滤波与匈牙利算法,实现高效跟踪。DeepSORT则在SORT基础上增加Deep Association Metric和外观信息,提升遮挡情况下的跟踪性能。两者都在MOT领域有显著贡献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇文章大概给大家介绍了一下多目标跟踪MOT的一些基础知识。初次了解还是从经典的算法开始,SORT和DeepSORT是多目标跟踪中两个知名度比较高的算法。DeepSORT是原团队对SORT的改进版本。这个算法也是开源的,github上有一个DeepSORT+Yolov3的项目,初入多目标坑的小伙伴应该在搜代码的时候都看到过。

本文将带大家解析一下SORT和DeepSORT的基本思路,废话不多说,开始正题。

1. SORT

首先要说明一点,现在多目标跟踪算法的效果,与目标检测的结果息息相关,因为主流的多目标跟踪算法都是TBD(Tracking-by-Detecton)策略,这里不再赘述,有不懂的小伙伴可以去看本系列的第一篇领域综述。

在SORT论文的一开始,作者也强调了这一点。作者原话是说通过更换检测器可以将跟踪效果提高18.9个百分点。说这点是为了给做工程的朋友们一个启示,用再花哨的跟踪算法,有时也不如用针对性训练的检测器来的效果好。在实际工程中,为了提高多目标跟踪的效果,可以从检测器处多做文章(比如多收集一些对应任务的数据来训练检测器),跟踪的效果也会水涨船高。

抛开检测不谈,我们来看SORT的跟踪思路。SORT采用的是在线跟踪的方式,不使用未来帧的信息。在保持100fps以上的帧率的同时,也获得了较高的MOTA(在当时16年的结果中)。

 

                                                    &n

<think>嗯,用户问的是关于Sort跟踪DeepSort的介绍。我需要先回忆一下这两个算法的背景区别。Sort,全称是Simple Online and Realtime Tracking,应该是一个目标跟踪算法,主要用于视频中的多目标跟踪。而DeepSort是在Sort基础上改进的版本,可能结合了深度学习技术,提高了跟踪的准确性稳定性。 首先,我应该从Sort开始介绍。Sort的核心应该是什么?记得它用的是卡尔曼滤波(Kalman Filter)匈牙利算法(Hungarian Algorithm)。卡尔曼滤波用于预测目标的位置,匈牙利算法则负责数据关联,也就是将检测框跟踪目标进行匹配。不过,Sort的缺点可能是当目标被遮挡时,容易丢失,因为它主要依赖检测器的结果,而没有考虑目标的外观特征。 接下来是DeepSortDeepSortSort的基础上引入了深度学习模型,比如使用卷积神经网络(CNN)来提取目标的外观特征。这样,在数据关联的时候,不仅考虑运动信息的相似性(通过马氏距离),还考虑外观特征的相似性(通过余弦距离)。这样即使在目标短暂遮挡后,也能通过外观特征重新关联上,减少ID切换的情况。 用户可能需要了解两者的区别应用场景。比如,Sort适用于对实时性要求高但可以接受一定误跟踪的场景,而DeepSort适用于需要更高准确性处理复杂遮挡的情况,比如人群监控、自动驾驶等。同时,DeepSort因为加入了外观特征,计算量会更大,可能影响实时性,不过现在有优化方法。 还要注意用户可能的实际需求,他们可能在做计算机视觉项目,需要选择合适的多目标跟踪算法。可能需要简要说明它们的优缺点,帮助用户做出选择。比如,如果检测器准确率高且遮挡少,Sort可能足够;如果需要处理频繁遮挡,DeepSort更合适。 另外,可能需要提到两者都是在线跟踪,即逐帧处理,不需要未来帧的信息,适合实时应用。而像其他算法如MOTDT可能用到了更复杂的机制,但用户没问那些。 最后,检查有没有遗漏的关键点,比如Sort的简单高效,DeepSort的深度特征融合,以及它们的性能指标对比,比如MOTA、ID切换次数等。不过用户可能不需要太详细的数据,但概念上的对比很重要。</think>好的,我来为你介绍 **SORT** **DeepSORT** 这两种多目标跟踪(MOT, Multi-Object Tracking)算法,以及它们的核心思想区别。 --- ### **1. SORT(Simple Online and Realtime Tracking)** **SORT** 是一种基于检测的实时多目标跟踪算法,核心思想是**高效关联检测框**。其特点是简单、速度快,适合实时场景。 #### **核心步骤**: 1. **检测阶段**:使用目标检测器(如YOLO、Faster R-CNN)获取当前帧中物体的边界框(Bounding Box)。 2. **预测阶段**:通过**卡尔曼滤波(Kalman Filter)**预测当前跟踪目标在下一帧的位置(基于运动模型)。 3. **数据关联**:使用**匈牙利算法(Hungarian Algorithm)**将当前帧的检测框与预测的跟踪目标进行匹配,主要基于边界框的**交并比(IoU)**作为相似度指标。 4. **更新阶段**:用匹配成功的检测框更新卡尔曼滤波的状态。 #### **优点**: - 计算效率高,适合实时应用(如视频监控)。 - 实现简单,依赖检测器的性能。 #### **缺点**: - **依赖检测质量**:如果检测器漏检或误检,跟踪会失效。 - **短期遮挡处理差**:遮挡时易丢失目标,导致ID切换(ID Switch)。 - **未利用外观特征**:仅依赖运动信息(IoU),无法处理复杂场景。 --- ### **2. DeepSORT(Deep Learning Extension of SORT)** **DeepSORT** 是SORT的改进版本,引入了**深度学习提取外观特征**,显著提升了遮挡复杂场景下的跟踪鲁棒性。 #### **核心改进**: 1. **外观特征提取**: - 使用预训练的CNN模型(如ResNet)提取检测框中物体的**外观特征向量**。 - 通过计算特征向量的余弦距离(外观相似度),辅助数据关联。 2. **级联匹配(Cascade Matching)**: - 优先匹配频繁出现的跟踪目标,减少遮挡导致的ID切换。 - 结合**运动相似度(马氏距离)****外观相似度(余弦距离)**,加权计算综合代价矩阵。 3. **改进的卡尔曼滤波**: - 对运动模型的状态向量进行了扩展,更精确地预测目标位置。 #### **优点**: - **抗遮挡能力强**:利用外观特征,即使目标短暂消失也能重新关联。 - **减少ID切换**:在拥挤场景中表现更好。 - **兼容性强**:可与多种检测器结合(如YOLO系列)。 #### **缺点**: - 计算量略高:提取外观特征增加了计算成本。 - 需要预训练的特征提取模型。 --- ### **3. SORT vs DeepSORT 对比** | 特性 | SORT | DeepSORT | |-----------------| | **数据关联依据** | 运动模型(IoU + 马氏距离) | 运动模型 + 外观特征(余弦距离) | | **抗遮挡能力** | 弱 | 强(依赖外观特征) | | **ID切换频率** | 高 | 低 | | **计算复杂度** | 低(适合实时) | 中(需提取特征) | | **实现难度** | 简单 | 中等 | --- ### **4. 应用场景** - **SORT**:对实时性要求极高、遮挡较少的场景(如车辆跟踪)。 - **DeepSORT**:复杂场景(如人群跟踪、体育赛事分析),需处理频繁遮挡外观变化。 --- ### **总结** - **SORT** 是轻量级基准算法,适合入门学习简单场景。 - **DeepSORT** 通过引入深度学习提升了鲁棒性,是工业级应用的主流选择。两者均属于**在线跟踪**(逐帧处理,无需未来帧信息),适合实时系统。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值