统计|我们如何理解数据的4个尺度

本文详解四种数据尺度——定类、定序、定距和定比,阐述它们适用的数学运算和测度中心,如定类尺度用模,定序尺度用中位数,定距尺度用算术平均值,定比尺度用几何平均值。理解这些有助于结构化数据分析

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本博文源于数据科学入门,在我们分析结构化数据时,通常会将每一列数据归为以下4个尺度中的一个:

  1. 定类尺度
  2. 定序尺度
  3. 定距尺度
  4. 定比尺度

因此本博文主要讲解如何理解它们

定类尺度

定类尺度就是划分数据划分类别。常见的有:性别、国籍、种类和啤酒的酵母种类

适合的数学运算

判断某一类是否与另一个相等或者集合隶属于

测度中心

测度中心就是描述数据趋势的数值,定类尺度我们用来作为其测度中心。比如世界卫生组织酒精消费量数据,出现最多的州是:Africa,那么Africa就是它的测度中心

定序尺度

定序尺度是一种提供等级次序的尺度,常见的有:各种测量表(量表值:1-10那种)

适合的数学运算

排序和比较

测度中心

中位数,比如员工满意度,1-10打分,我们就会用中位数

定距尺度

定距尺度是一种可以进行有意义的减法运算

适合的数学运算

加法与减法

测度中心

算术平均值、标准差

定比尺度

定比尺度是一种比定距尺度更为强大与全面,相比于定距尺度它有0的概念。通常非负数

适合的数学运算

加减乘除

测度中心

算术平均值与几何平均值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值