初探AI之got-ocr2.0大模型本地部署与遇到的各种坑处理

初探AI之got-ocr2.0大模型本地部署与遇到的各种坑处理

一、环境搭建

1.安装cuda,本人使用的是12.1版本,下载地址:https://developer.nvidia.com/cuda-12-1-1-download-archive

2.安装conda3,https://blog.csdn.net/m0_73634846/article/details/136378350

3.准备代码环境

原文: https://mp.weixin.qq.com/s/PQVrlr5FoVb89Mivzi7pLA

顺序执行:

git clone https://github.com/Ucas-HaoranWei/GOT-OCR2.0.git

 conda create -n got python=3.10 -y #创建虚拟环境

 conda activate got #激活虚拟环境

 pip install -e . # 使用项目里面pyproject.toml安装依赖

安装 Flash-Attention:

pip install ninja

 pip install flash-attn --no-build-isolation

 ps:以上是官方的安装教程,但是其实会遇到很多问题,以下进行逐一说明,不保证能解决所有问题,但是大部分问题都能解决

二、问题序列:

1.python安装cuda出现错误提示:AssertionError: Torch not compiled with CUDA enabled

https://blog.csdn.net/qq_44750293/article/details/129685556

问题本质是pytorch无法调用cuda,原因是国内加速镜像默认会安装cpu版本,安装gpu版本即可,及torch.cuda.is_available输出为false即代表安装的版本为cpu版本,安装gpu版本后即可输出为true

###1、torch.cuda.is_available()显示false解决方法:

 使用pytorch官方推荐的版本安装:

  https://pytorch.org/

  例如cuda12.1的安装命令: 

   conda: conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

   pip: 

    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 (亲测有效,这个需要下载2小时+)

    阿里云加速(使用这个最快,推荐,只需要下载2min+):

     pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 -f https://mirrors.aliyun.com/pytorch-wheels/cu121

2.遇到deepspeed安装报错

Python|Windows 安装 DeepSpeed 安装方法及报错 Unable to pre-compile async_io 处理:

 https://blog.csdn.net/Changxing_J/article/details/139789110

配置visual studio

运行Anaconda Powershell Prompt,执行 Set-Item Env:\DS_BUILD_OPS 0,切换到deepspeed目录,再次执行 : .\build_win.bat

3.pip错误

ERROR: Could not find a version that satisfies the requirement setuptools_scm (from versions: none)

 尝试切换pip源试试,pip install -i 源地址

4.conda错误

在VS界面激活anaconda,但是报错”CondaError: Run 'conda init' before 'conda activate'“,该如何解决?

 打开Anaconda Prompt

 conda init

 conda activate 环境

5.遇到依赖C++环境的库错误解决

【报错】fatal error C1189

 visual studio 版本过高或过低导致,目前2019版本兼容性相对较好

https://blog.csdn.net/thisjuly/article/details/136260069

6.flash_attn安装后执行失败,本质是编译的包不对

text-generation-webui加载codellama报错DLL load failed while importing flash_attn_2_cuda: 找不到指定的模块。:

https://blog.csdn.net/dandandancpop/article/details/134729988

解决: https://github.com/Dao-AILab/flash-attention/releases ,在此链接中下载与本地cuda与torch且python相对应的版本即可,cuda12.1下载cu123亲测可用,cp310为python3.10,cp311为python3.11其他同理

7.本地无法启动大模型

因为默认的源是hugging-face,但是国内无法访问,国内可使用modelscope(魔塔社区)的模型

hugging-face模型下载不成功?

 https://zhuanlan.zhihu.com/p/722248326?utm_campaign=shareopn&utm_medium=social&utm_psn=1824225242303819776&utm_source=wechat_session

 使用modelscope提供的模型

8.cudnn部署

https://blog.csdn.net/retainenergy/article/details/126183711

 cuDNN下载链接:https://developer.nvidia.com/rdp/cudnn-archive ,本人使用的8.9.7,安装链接中进行配置即可

三、需要用到的资源下载链接(只上传了下载很慢的资源):

通过网盘分享的文件:GOT-OCR大模型部署相关

 百度云链接: https://pan.baidu.com/s/1s18O0kS3apBvs-L35KB-qw?pwd=y4ht 提取码: y4ht

 阿里云盘链接: https://www.cnblogs.com/qtclm/p/18475732 提取码 6mw7

四、执行代码与输出

from modelscope import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True)

model = AutoModel.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)

model = model.eval().cuda()

# input your test image

# image_file = '/mnt/workspace/58F3EF14-E073-4BBE-B9D9-53CCFE6AE183.png'

image_file = 'benchmarks/format_doc_benchmark/2020-03-27__潍柴动力股份有限公司__000338__潍柴动力__2019年__年度报告/38.jpg'

# plain texts OCR

res = model.chat(tokenizer, image_file, ocr_type='ocr')

# format texts OCR:

# res = model.chat(tokenizer, image_file, ocr_type='format')

# fine-grained OCR:

# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='')

# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='')

# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='')

# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='')

# multi-crop OCR:

# res = model.chat_crop(tokenizer, image_file, ocr_type='ocr')

# res = model.chat_crop(tokenizer, image_file, ocr_type='format')

# render the formatted OCR results:

# res = model.chat(tokenizer, image_file, ocr_type='format', render=True, save_render_file = './demo.html')

pr

int(res) 

原图

输出

结论: 识别率还是很不错的,后面在使用大量图片测试

五、其他补充

1.modelscope默认下载的模型目录:

 ~/.cache/modelscope/hub

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛马程序员2025

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值