线程池
线程池,是一个能够重复使用已经存在的线程而不是每次都创建新的线程的机制。线程池中的线程可以执行指定的任务,当一个任务执行完成之后,线程并不会死掉,而是再次回到线程池中,等待下一个任务。
使用线程池能够有效的提高系统的资源利用率,减少系统的开销。
Python中有一个模块叫threadpool,可以方便的创建线程池。
下面是一个简单的例子:
import time from threadpool import ThreadPool, makeRequests pool = ThreadPool(4) 4个线程 def sayhello(str): print "Hello ", str time.sleep(2) return str+"888" 要执行的任务 生成要执行的任务列表 args = [] for i in range(10): args.append(([i], None)) 执行任务 requests = makeRequests(sayhello, args) [pool.putRequest(req) for req in requests] 等待任务完成 pool.wait()
运行结果:
Hello 0 Hello 1 Hello 2 Hello 3 Hello 4 Hello 5 Hello 6 Hello 7 Hello 8 Hello 9
可以看到,我们在创建线程池的时候,指定了线程池的大小为4。然后我们创建了一个任务列表,将10个任务放到了任务列表中,接着我们使用makeRequests方法批量创建了这10个任务,并放到了线程池中。最后我们使用pool.wait()方法等待任务完成。
运行结果可以看到,线程池中的4个线程被重复使用,当一个任务执行完成之后,线程并不会死掉,而是再次回到线程池中,等待下一个任务。
线程池的使用能够有效的提高系统的资源利用率,减少系统的开销。
顺便介绍一下我的另一篇专栏, 《100天精通Python - 快速入门到黑科技》专栏,是由 CSDN 内容合伙人丨全站排名 Top 4 的硬核博主 不吃西红柿 倾力打造。 基础知识篇以理论知识为主,旨在帮助没有语言基础的小伙伴,学习我整理成体系的精华知识,快速入门构建起知识框架;黑科技应用篇以实战为主,包括办公效率小工具、爬虫、数据分析、机器学习、计算机视觉、自然语言处理、数据可视化等等,让你会用一段简单的Python程序,自动化解决工作和生活中的问题,甚至成为红客。
🍅 订阅福利:原价299,限时1折订阅专栏进入千人全栈VIP答疑群,作者优先解答机会(代码指导/学习方法指引),群里大佬可以抱团取暖(大厂/外企内推机会)
🍅 订阅福利:简历指导、招聘内推、80G全栈学习视频、300本IT电子书:Python、Java、前端、大数据、数据库、算法、爬虫、数据分析、机器学习、面试题库等等
🍅 专栏地址: 点击《100天精通Python - 快速入门到黑科技》