YOLOv8改进,YOLOv8结合DynamicConv(动态卷积),CVPR2024,二次创新C2f结构


在这里插入图片描述


摘要

在这里插入图片描述

大规模视觉预训练显著提高了大规模视觉模型的性能。现有的低 FLOPs 模型无法从大规模预训练中受益。在本文中,作者提出了一种新的设计原则,称为 ParameterNet,旨在通过最小化FLOPs的增加来增加大规模视觉预训练模型中的参数数量。利用 DynamicConv 动态卷积将额外的参数加入到网络中,而几乎不增加FLOPs。ParameterNet 方法使低 FLOPs 网络能够受益于大规模视觉预训练。


# 理论介绍

DynamicConv(动态卷积)是一个用于提高卷积神经网络(CNN)性能的技术,核心思想是动态地生成卷积核(filter),而不是使用固定的卷积核。通过引入更多的计算灵活性和适应性来增强卷积操作的表达能力,进而提升模型的性能。工作方式:

  • 专家选择:DynamicConv 通过引入多个“专家”(experts),每个专家学习特定的卷积模式。输入图像的不同部分会选择不同的专家进行卷积。
  • 动态卷积核生成:根据输入的不同特征,专家网络动态地生成卷积核,而不是使用固定的卷积核。这意味着卷积操作是基于输入特征动态调整的,具备更多的灵活性和表达能力。
  • 混合卷积:在某些情况下,可以将多个专家的卷积结果进行加权融合,形成最终的卷积输出。这种加权融合方式根据任务的不同可以进行调整。

DynamicConv 的核心优势在于它能够根据输入的特征动态生成适应性强的卷积核,从而提升模型的表达能力和灵活性。

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址

下文都是手把手教程,跟着操作即可添加成功


### 如何在 YOLOv8 中添加 DyHead #### 添加自定义模块到 YOLOv8 的步骤 为了在 YOLOv8 中集成 Dynamic Head (DyHead),需要对模型结构进行调整并引入新的层。具体来说,这涉及到修改配置文件编写相应的 Python 类来实现 DyHead 功能。 #### 修改 `yaml` 配置文件 首先,在项目的配置目录下找到对应的 `.yaml` 文件(例如 `models/yolov8n.yaml`),然后编辑此文件以加入新组件的相关设置: ```yaml backbone: ... neck: - from: [-1,] module: models.common.DetectMultiBackend args: [768, [256, 512], [[1, 3, 5]]] # 这里假设 DyHead 接受这些参数作为输入 ... head: - type: 'DynamicHead' num_classes: 80 in_channels: 256 feat_channels: 96 stacked_convs: 4 ``` 上述 YAML 片段展示了如何指定一个新的颈部(neck)部分用于连接骨干网络(backbone)与头部(head)[^2]。 #### 编写 PyTorch 自定义类 接着,需创建一个名为 `dynamic_head.py` 的脚本来定义 `DynamicHead` 类。以下是简化版的代码框架: ```python import torch.nn as nn class DynamicConv(nn.Module): """动态卷积层""" def __init__(self, channels_in=256, channels_out=256, kernel_size=3): super().__init__() self.conv = nn.Conv2d(channels_in, channels_out, kernel_size) def forward(self, x): return self.conv(x) class DynamicHead(nn.Module): """基于给定特征图执行预测的任务特定头""" def __init__(self, num_classes, in_channels, feat_channels, stacked_convs): super(DynamicHead).__init__() conv_layers = [] for _ in range(stacked_convs): # 创建多个堆叠的卷积层 conv_layers.append( DynamicConv(in_channels=in_channels, out_channels=feat_channels)) self.convs = nn.Sequential(*conv_layers) self.cls_conv = DynamicConv(feat_channels, num_classes * 9) self.reg_conv = DynamicConv(feat_channels, 4 * 9) def forward(self, feats): cls_score = self.cls_conv(feats).sigmoid() bbox_pred = self.reg_conv(feats).exp() return cls_score, bbox_pred ``` 这段代码实现了基本版本的 `DynamicHead` 其内部使用的 `DynamicConv` 卷积单元。 通过以上两步操作——更新配置文件中的架构描述以及开发必要的 PyTorch 组件——可以在 YOLOv8 上成功部署 DyHead 结构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值